RADC-TR-90-47
Final Technical Report

April 1990 AD—A223 072

LANGUAGE SUPPORT FOR PARALLEL
COMPUTATION

University of California

C.V. Ramamoorthy

DTIC
ELECTE &=
S JUN"11990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

90 ¢6 21 062
S

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-47 has been reviewed and is approved for publication.

0/ y ,/ﬂ
APPROVED: {ZLLJ /;[/, ’W/{om’f(

PAUL M. ENGELHART
Project Engineer

vt
I BN
1/ !

APPROVED: #@AKMM.L bl &

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER: ~ /ﬂ %«M_)
IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE OPw N, 6704-0188

Public reportng burnden kr tus cole of Inky n » 1 howr per xbrg S Wme for) ssarceng g dam sourass Qaterng g
~M-vm‘=:m -w'-‘r'uvmrin':- scm-u [¢ inbormanon O ’"um;'-"gfﬂ:m Sue 1:&'..-” vum-ooizin-
e Ofcs of NEYmasen wrx RegAistory Aflars, Ghuunmmnlmmn.ocm
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1990 Final Sep 88 - Sep 8%
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
LANGUAGE SUPPORT FOR PARALLEL COMPUTATICN C - F30602-88-D-3027
PE - 63728F
PR - 2527
C. V. Ramamoorthy : WU - P1
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) s ;ggg%?wgae%%mmunm
University of California
Computer Science Division N/A

Berkeley CA 94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING AGENCY
PEPORT NUMBER

Rome Air Development Center (COEE)
Griffiss AFB NY 13441-5700 RADC-TR-90-47

11. SUPPLEMENTARY NOTES

RADC Project Engineer: Paul M. Engelhart/COEE/(315) 330-4476

12a. DISTRIBUTION/AVAILABILITY STATEMENT 120. DISTRIBUTION COOE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maxmum 200 words)

-

. This final technical report summarizes the research accomplished under the Expert

|/ Science and Engineering (ES&E) program by the University of California at Berkeley
through Syracuse University. The research effort, entitled ""Parallel Extensions

for Object Oriented Programming', examined communication aspects leading to language
support for parallel computation.

The work undertaken in this effort has extended concurrent programming launguages

in their communication primitives. Although many abstraction mechanisms have been
used in programming languages, including control abstraction mechanisms (such as
procedures) and data abstraction mechanisms (such as data types), communication
abstraction mechanisms have been found to be the most useful for parallel/concurrent
programming paradigms. Work accomplished in this effort has extended those mechan-

isms, concen i on_inter-process communication.
14, SUBJECT TERMS 15. NUMBER OF PAGES
Parallel Processing, Concurrent Processing, System Modeling, 212
STOCS, Petri Nets 16. PRICE CODE
17 SECURITY CLASSIFICATION 3. SECURITY CLASSIFICAT S SECURITY CLASSFIGAT
OF AEPORT ! ontr’«s's PAGE ON ! g%i%s'm%? IFICATION 2. LIMITATION OF ABSTRACT
‘ UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540.01.-280.98~ Swancaro rorm 29 50092!

Presarmen by ANS! S©O 7% 18
299.01

UNCLASSIFIED

13. ABSTRACT (Continued).

A formal model for concurrent systems, called the Synchronous Token-based
Communicating State (STOCS) model, has been used to model and analyze concurrent
systems. Since present concurrent languages do not support any form of analysis
of the communication structure of programs, two new constructs based on STOCS
formalism have been developed to support high level specification - haundshake
and unit. A fair and efficient algorithm for execution of multi-process shared
events is also presented. //ﬁ"(o /’

B oot e T ————

Accession For ,
| Acces- T

NTIS ORA%L g

DTIC TAB

Unanncunced a
Justification ———f

By
Distributiag(ﬂ___
Avéilatiiity Codes
——__—fﬂAvail and/or
Dist ‘ Spcelal

A

Dyie

copy
MSHECTED
H

UNCLASSIFIED

AR S

Table of Contents

Chapter 1: INtroQuetion ..o, 1
1.1 Issues in Modeling Concurrent SyStemsccooovvieeiiiee e, 4
1.1.1 Processes: Explicit vs Implicit ..o, 4
1.1.2 Communication: Shared Variable vs Messagesccccoocovinn. 4
1.1.3 Buffering: Unbuffered vs Unbounded ..o 5
1.1.4 Expressive Power: Richness vs Tractability ..., 6
1.2 Contributions of the Report s 7
1.3 Organization of the Report .., 9
Chapter 2: Previous WOTK ... 11
2.1 Petrl NS oottt 11
2.2 Calculus of Communicating SyStemSc.oooveiiiiiinrncir e 13
2.3 Communicating Sequential Processesc..ccccocevuennn. JSS U 15
2.4 ACIOT SYSTEIMS oottt s 16
2.5 Path EXPressions .ttt 17
2.6 S/R MOl oottt 18
2.7 Other SYSTOIMIS ittt 21
2.8 CONCIUSIONS ittt bt 21
Chapter 3: The STOCS Model - Basic Definitions ..., 23
3.1 INTFOQUCTION ittt 23
3.2 The STOCS Model - Definition ..o 24
3.3 Relationship of STOCS machines with Finite State Machines 29
3.4 The Language of a STOCS Machine ... 32
3.5 Deterministic STOCS Machines ..o 35
3.6 Semantics of the STOCS Model ..o 39
3.7 Modeling by the STOCS Model ..c.oooooviieeceeeeee s 41
3.7.1 Events and Conditions ... s 41
3.7.2 Concurrency and Choice ...t 44
3.7.3 Linear Constraints on the Languagecccocoooovvieveiiincc, 45
3.7.4 Interaction between Multiple Systemsccccooceoevevevrninccee e, 46
3.8 CODCIUSIONS ..ottt b s ettt et b 48
Chapter 4: An Algebraic Characterization of STOCS Machines o

.. 4
4.1 INtrOQUCLION oot ettt 49
4.2 Concurrent Regular Expressions ..o 50
4.2.1 DefiNItION .ot 51
4.2.2 Choire Concatenation and Kleene Clostre o, 52

i

4.2.3 INtETIRAVIIIE oottt et 53

4.2.4 AIPha ClOSUTE ..o 55
4.2.5 Synchronous CompOSItIONccooviiiemmrccicniineee e 59
4.3 Modeling of Concurrent SyStemscocoonviiieininiceeecresieneee. 61
4.4 Relationship between CRE’s and STOCS Machines ... 63
4.5 Concurrent Regular Languages ... 71
4.6 CONCIUSIONS ..ottt ettt e eaes 74
Chapter 5: Comparison With Petri Nets ... USROS 75
5.1 INTTOQUCION .ottt bee 75
5.2 Comparison of Reachability ..., 75
5.3 Comparison of Ease in Modelingcocooeeiivioicicnininiccrcecneececnes 1131
5.4 Comparison of Languages ... 95
5.5 CONCIUSIONS oottt eas s ettt sssaessas 99
Chapter 6: STOCS Machines With Uncontrollable Events ... 100
G.1 INtrOAUCHION oottt 100
6.2 Related WOTK oottt 103
6.3 Uncontrollable STOCS Machines ..., 105
6.3.1 SYNTAN Lottt 105
5.3.2 SEIMANTICS L.iiiiiiiiiiieiiei ettt ettt as et st ese e se et es ettt n e 107
6.4 Uncontrollable CRE'S ..o 110
B.4.1 SYMUEAN ettt 110
5.9.2 SEMIATMITICS 1ottt ta sttt 110
6.5 Equivalence of USTOCS Machines and UCRE’s ... 112
6.5.1 Construction of a USTOCS machine from a UCRE ... 112
6.5.2 Construction of a UCRE from a USTOCS machineccceeee. 116
6.6 CONCIISIONS oottt ettt bbbt s et s et na s s et nee 117
Chapter 7: Analysis of STOCS Machines ..., 119
T INETOAUCTION oot 119
7.2 Exploitation of Modularity ... 121
7.2.1 Reachable Configurations ... 123
7.2.2 Language of the STOCS Machine ... 127
7.3 Exploitation of SyMMerY ... sesssensaoes 128
7.3.1 Star TOPOIOZY it 130
7.3.2 Broadcast TOPOIOGY ..o 135
7.3.3 RiNE TOPOIOZY oot 137
7.4 CONCIUSIONSooooieieiie ettt e 143
Chapter 8: ConC: Embedding of the STOCS Model in C ... 145
8.1 INtrOdUCHION .ot 145
8.2 Related WOTK oottt a e nnee 146
8.3 CONSITUCES ..ot etr et sa et a st n e es bbbttt ssasnae b st bt eneses 149
8.3.1 Handshake Construct ... 149
ii

8.3.2 Guard Construct.. .ottt i i it e et 157
8.3.3 Mutual Exclusion Between Two Processes................... 158
8.3.4 Dining PhiloSophers . c. et in ittt ieeneneaeonnaconanans 159

8.4 Interaction between Computation and Communication Objects
.. 161
8.5 Implementation of the ConC System ..., 162
8.6 CONCIUSIONS ooiviiiiic ettt 163
Chapter 9: Execution of STOCS Machines 165
9.1 INtrodUCtION .ot 165
9.2 Related WOTK .ottt 167
9.3 Description of the Algorithm ..., 170
9.4 Message ComPplexity ..ot 174
9.5 Correctness of the Algorithm ... 175
9.5.1 Safety Property ..o, 175
9.5.2 Liveness PrOperty ..., 175
9.5.3 Effective Implementation ..., 177
9.6 Efficiency Considerations of the Algorithm ..., 178
9.6.1 Minimum Maximum Load on Any Node ..o . 178
9.6.2 Minimum Total Number of Messages ..o, 180
9.7 CONCIUSIONS it 182
Chapter 10: Conclusions and Future Directions ..o, 183
10.1 Summary of the Work e 183
10.2 Future WOrK oo, 184
10.2.1 SpecificatION .o 184
10.2.2 Relationship with Petri Nets ..o 186
10.2.3 Algebraic Representation of a STOCS Machine ..o 187
10.2.4 The Language of a STOCS Machine ..o 187
10.2.5 Modeling of Uncontrollable Events ..o 188
10.2.6 Analysis of STOCS Machinescccoooioiiioiiiiicceeee 188
10. 2.7 Incorporation of the STOCS Model in ConCccoccooovvcovevrnnncnn. 189
ReferenCes ... 191
Appendix A: Yacc Grammar for ConC ..., 200

CHAPTER 1

Introduction

The increasing use of computers in day-to-day life has placed demand on
complxting that is beyond the capabilities of current computer systems. This
demand can be met either by increasing speed of uniprocessor systems or by
increasing the number of processors in multi-processor systems. We call com-
puter systems that use more than one processor, concurrent systems. The
current hardware technology favors concurrent systems by making it more
economical to provide high MIPS (million of instructions per second) by multi-
ple processors rather than uniprocessors. In this dissertation, we will restrict

ourselves to concurrent systems.

A concurrent system that consists of processors which execute in a lock-
step manner is called a synchronous system. A concurrent system in which
processors are loosely coupled and execute independently of each other is
called an asynchronous system. Processors in an asynchronous system do not
share the clock: therefore, it is easier to increase the number of processors in
an asynchronous system than in a synchronous system. This dissertation deals

only with asynchronous concurrent systems.

Asynchronous concurrent systems can further be classified into shared
memory based and message based architectures. We call shared memory based
systems, parallel. These systems assume that processors communicate with
each other by writing and reading in shared memory locations. Concurrent

systems that consist of multiple computers connected by a communication net-

‘

work are called distributed systems. Distributed systems offer many advan-

tages over parallel systems. These advantages are as follows:
(1} Distributed systems provide load sharing to better exploit avaijlable
processing capacity.
(2) Distributed systems provide resource sharing.
(3) Distributed systems provide dala sharing as in distributed databases.

(4) The geographical structure may be inherently distributed. The low

communication bandwidth may force local processing.

(5) The logical structure may be simpler, e.g. if each local process is

located in a separate processor.

(6) The reliability of a system can be enhanced. Distributed systems are
more reliable because the failure of a single computer does not affect the

availability of others. |

(7) The fleribility of a system is increased because a single processor can
be added or deleted easily.

(&) .Availability of high bandwidth network and cheap diskless worksta-

tions also favors distributed computing for economic reasons.

This dissertation deals only with message based concurrent systems. By
concurrent systems we would mean distributed systems unless otherwise
specified. Many of the techniques developed, however, will also be useful for

parallel systems.

The usefulness of distributed systems has spurred a significant amount of

research [Lampson 81, Alford 85, Raynal 88]. There have been advances both
2

212
High MIPb

High qpeed U mprocessofoncurrent Systems

\

Synchronous Asynchronous

N

Shared Memory basedfessage based

\
K-
~]
Asvnchronous Synchrono
Messages Messages

Figure 1.1: The Focus of this Dissertation
in hardware and software but the design of distributed software has proven to
be more difficult than that of distributed hardware. Architectures, such as
Hypercube, provide up to 16K processors connected by a network. The exploi-
tation of such hardware still remains a challenging task. This dissertation deals
only with techniques for the design of distributed software though many tech-

niques developed will also be useful for designing distributed hardware.

The design of sound distributed systems requires formal specification and
analysis techniques. Many algorithms informally argued to be correct, reveal
errors in later analysis. Formal methods would eliminate this problem by
avoiding any ambiguity that arises in informal reasoning. Formal specification

also lends itself to automatic analysis. Figure 1.1 shows the focus of the

3

dissertation.

1. Issues in Modeling Concurrent Systems

A model for a concurrent system would have different characteristics from
models used in a different domain such as security. For example, we would
expect a model for a concurrent system to have features for expressing com-
munication and synchronization among multiple entities. In this section, we

summarize the issues in formal specification and analysis of concurrent sys-

tems. These are as follows:

1.1. Processes: Ezxplicit vs Implicit

As defined earlier, a ¢ /ncurrent system has more than one process. Some
models assume that processes are specified explicitly by the user. Thus, the
user is responsible for specifving what should be done by who. Alternatively,
the model may be based on the idea of implicit parallelism. Here the user just
specifies what needs to be done and the system arranges for its concurrent
computation. The detection of parallelism has been found to be an extremely
hard problem and therefore we have chosen to use explicit specification of con-

currency in our mode).

1.2. Communication: Shared Variable vs Messages

If multiple processes in a concurrent system need to coordinate, they must
communicate with each other. This communication is traditionally expressed
via shared variable model or explicit messages. The shared variable model
assumes that a process can write into a shared memory location, from which

4

other processes can read. In this paradigm, data structures are shared and syn-
chronization is required to ensure that accesses and updates to the data is
proper. Messages is an alternative form of communication in which processes
do mnot share any data. A process has to explicitly send the information
required by some other process. Lynch and Fischer [Filman 84] describe some

of the difficulties of shared variable communication:

The way <n which processes cossunicate ®ith other
processes ond with their envivonsents 48 by means of
variables. . .Unlike wmessage-based <communication wmechan-
i1sm8, there 15 n0 guarantee that anyone will ever read
the value, nor is there any prisitive sechaniss to tnfors

the writer that the value has been read. 7Thus for mean-
ingful communicatton to take place, both parties sust
adhere to previously-agreed-upon-protocols ..)

With the above in mind, we have assumed that communication is via

messages in our model.

1.3. Buffering: Ui:buffered vs Unbounded Bu ffering

An issue that is important for message based systems is the number of
messages that can be pending at any time. Some systems provide unbu ffered
messages or synchronous messages which must be received by the receiver
before the sender of the message can proceed. Other systems provide buffered
messages or asvnchronous messages which do not block the sender. Note that
asynchronous systems can use either synchronous or aynchronous message
passing. We have assumed synchronous message passing in our model. Hoare
gives the foliowing reasons for synchronized communication. (1) Synchronized
communication is more basic as it matches closely a physical realization on

wires which connect processing agents. Such wires cannot store messages. (2)

\

It also matches closely the effect of calling and returning from subroutines
within a single processor, copying the values of the parameters and the results.
(3) When buflering is desired, it can be implemented simply as a process; and
the degree of buffering can be precisely controlled by the programmer. {(4) The
mathematical treatment of systems with unbounded buffering is also compli-
cated by the fact that that every network is an infinite state machine even

when the component processes are finite. (5) Buffering also makes fault

recovery difficult as the failure of a send is detected much later in the pro-

gram.

1.4. Expressive Power: Richness vs Tractability

The model should be rich enough to express important aspects of the sys-
tem. For example, a finite state machine cannot model any system which can
have an unbounded number of states, and may therefore be unsuitable to
model some real life applications. A model that is theoretically more powerful,
however, is inherently more difficult to analvze. For example, Turing
machines, the most general model of computation known, are unanalyzable for
most interesting problems, such as halting and equality. Any model for con-
current s_\'ste:m should strike a good compromise between its expressive power
and its analyzability. Our model is equivalent to Petri nets which are not only
rich enoggh to capture unboundedness but also simple enough to guarantee

that the halting problem is decidable.
Note that, even if two models have the same expressive power, they may
have different expressive convenience. For example, Ada and Turing machine

6

have the same theoretical power but it is much more difficult to write pro-

grams in Turing machine formalism than in Ada. Models that are used for

proving properties about a system tend to be stripped of syntactic conveni-

ences, while models that are used as implementation tools have syntactic sugar

added to them.

2. Contributions of this Report

A formal model for concurrent systems called the Synchronous Token
based Communicating State(STOCS) is proposed. To prove that a
STOCS machine is amenable to pet-theoretic analysis, we prove that the
reachability problem in a Petri net is reducible to that in a STOCS
machine and vice-versa. The STOCS mode] is easier to use than Petri
nets, as it supports modularity in specification and analysis. For example,
we show that analysis of safety properties can avouid searching global state
space. by concidering only the relevant modules.

We show that the STOCS model can be characterized algebraically by
concurrent regular expressions. Concurrent regular expressions extend
classical regular expressions with three operators - interleaving. interleav-
ing closure and synchronous composition. Thus, the STOCS model com-
bines advantages of both algebraic and net-theoretic approaches.

We provide a unified treatment of oracular and demonic non-determinism
in the STOCS model. We provide denotational semantics of STOCS
machines and concurrent regular expressions which can take internal

actions.

Conventional automatic analysis techniques to catch logical errors in a
concurrent system may be infeasible because the system may bave a large,
or even an unknown number of processes. These techniques, which are
based on state space exploration, rup into the state explosion problem.
Since most distributed systems have one or more sets of identical
processes, we exploit the symmetry to reduce the state space for
automatic analysis techniques. We describe symbolic and inductive tech-

niques to analyze a STOCS machine.

Present concurrent languages do not support any form of analysis of the
communication structure of programs. To support high level specification
and analysis of distributed systems, we propose two new constructs based
on STOCS formalism - handshake and unit. The handshake construct is
a remote procedure call generalized for multiple parties. The unit con-
struct has three functions - to restrict the possible calls to various
handshake procedures, to provide a synchronization mechanism, and to
specify computation that is directly relevant to communication. These
constructs can easily be added to any existing language. The current sys-
tem called ConC(Concurrent C) extends "C” for concurrent program-
ming. A prototype of ConC runs on a Sun cluster operating under Unix

4.2 BSD.

Implementation of a system expressed in the STOCS model requires exe-
cution of multi-process shared events. We present a fair and efficient algo-
rithm for execution of multi-process shared events. We also present its

application to distributed implementation of a generalized CSP

alternative command. We show that our solution is superior to proposed

implementations for generalized CSP alternative command.

3. Outline of the Report

Chapter 2 presents an overview of the previous work in modeling and
analvsis of concurrent systems. Chapter 3 provides the definition of the
STOCS model. It also presents many modeling techniques for the STOCS
model. Chapter 4 describes an algebraic characterization of 8 STOCS machine
using concurrent regular expressions. Chapter 5 compares the STOCS Model
with Petri nets. It shows by a constructive proof that the reachability problem
is equivalent for STOCS machines and Petri nets. It compares the modeling
convenience in Petri nets and STOCS machines. Chapter 6 addresses the issue
of modeling internal actions using STOCS machines and provides denotational
semantics for processes modeled using concurrent regular expressions. Chapter
7 describes projection, symbolic and inductive techniques to analyze a STOCS
machine. It demonstrates these techniques by analyzing several examples: 2-
out-of-3 problem, readers writers problem, the dining philosophers problem
and the mutual exclusion problem. Chapter 8 describes Concurrent C (ConC),
a programming language that extends C with constructs from the STOCS
model. Chapter 9 presents a fair algorithm to execute multi-process shared

events.

Following is the list of acronyms used in this report,

Acronym Meaning
STOCS Synchronous Token Based Communicating State
FLSTOCS | Free Labeled STOCS
DS’fOCS Deterministic STOCS
USTOCS Uncontrollable STOCS

FSM Finite State Machine

PN Petri Net

FLOPN Free Labeled Ordinary PN

RE Regular Expression

CRE Concurrent Regular Expression
UCRE Uncontrollable CRE

ConC Concurrent C

10

CHAPTER 2

Previous Work

The importance of concurrent systems has resulted in extensive research
on formal models for expressing concurrent systems. Models capture the
essential features of the system. In this chapter, we summarize the important
models that have been developed to express concurrent systems. We evaluate

these models for their suitability in modeling concurrent systems.

1. Petri Nets

Figure 2.1 Petri Net example

Petri nets, first developed by Petri [Petri 62], have been immensely popu-
lar for specifying concurrent systems. A general Petri net (or simply a Petri
net) is a directed bipartite multigraph. There are two kinds of nodes - places
and transitions - represented by circles and lines, respectively. An example is
shown in figure 2.1. It has five places(p,-ps) and six transitions(t,—1g). All arcs
are drawn between a place and a transition or a transition and a place. There

can be multiple arcs between the same pair of nodes, as seen between {, and

11

—%—_
ps (A Petri net which bas only simple arcs is called an ordinary Petri net. It

is just a graph instead of a multigraph.) A marking of a Petri Net is a function

which associates a certain finite non-negative number of ‘‘tokens” with each
place of the Petri Net. In the Petri Net shown in figure 2.1, p, contains one
token and p; contains 2 tokens. Arcs from places to a transition are called
input arcs to the transition. Arcs from a transition to places are called output

arcs of the transition. Transition ¢5 has two input arcs, one each from p, and

p4- Transition t4 has 3 output arcs, one to p, and two to p,.
Therefore, a Petri net PN can be formally represented by a five-tuple (P,
T, My, 1, O), where:
e P is the set of places;
e T is the set of transitions;
e MAf,is the initial net marking;
o 1O:T-> PV (the power set of P);
e I(t) is the set of the input places of transition t; and
e Oft) is the set of the output places of transition t.

A transition fires by removing tokens from the source places of its input
arcs and puts tokens in the destination places of its output arcs. The number
of tokens removed from a place when a transition fires is equal to the number
of arcs from that place to the transition. Similar]y., the number of tokens
added to a place as a result of the firing of a transition is equal to the number
of arcs from the transition to that place. The number of tokens in any place
can never become negative, so a transition can fire only if there are sufficient

12

number of tokens at the source places of all its input arcs. Such a transition is
called ““firable”. In the’Petri Net shown in figure 2.1, transitions {4 and ¢3 are
firable. Transition {3 can fire by removing one token from p, and pg. Since
t3 has no output arcs, firing t3 does not add tokens to any place. If transition
t4 fires, it adds 2 tokens to p,. The number of tokens in p, remains 1, since 4

puts back the token it removes.

Each transition of a Petri Net can be associated with a label. (In the
example transitions {1—f6 have labels a-f respectively.) A sequence of transi-
tion firings would be represented as a string of labels. We can also define an
acceptance condition for the Petri Net. All configurations of the Petri Net
satisfving the acceptance condition are final configurations. If a sequence of
transition firings takes the Petri Net from its initial configuration to a final
configuration, the string formed by the sequence of labels of the transitions is
said to be accepted by the Petri Net. The set of all possible strings accepted
by a Petri Net is called the language of the Petri Net. Different acceptance
cond;tions and constraints on the labeling function yield different types of
languages [Peterson 81]. [Peterson 81, Reisig 85, Genrich 80] provide an over-

view of research in the area of Petri nets.

2. Calculus of Communicating Systems (CCS)

The Calculus of Communicating Systems developed by Milner {Milner 80]
had a profound impact on the science of specifying synchronous systems. The
goal of his work is to develop a formal calculus for concurrent computation,

similar to the way lambda calculus is a formal calculus of uniprocess computa-

13

N

tion. This formalism is based on two central ideas - synchronized communica-
tion and observation equivalence. Each concurrent system is described by
means of algebraic expressions called behavior expressions. The calculus pro-
vides laws to prove the equivalence between two behavior expressions.
Beha;'ior expressions consist of multiple agents communicating by means of
synchronous composition. A process is defined by the following syntax: P ::
a.Q I Q+R INIL | .Q | QIR | Q | Q[S] The semantics of behavior expres-

sions is (informally) as follows:

7.Q: Process P acts as Q after a hidden action

a.Q: Process P acts as Q after the experiment

Q+R: Process P acts either as Q or R depending upon the choice offered
NIL: Process P does not admit of any experiment

QIR: Process P act as composition of processes Q and R

Q|[S]): Process P acts as Q with the relabeling function S.

For example, a binary semaphore s, may be specified as s = PVs, which
requires that a call to \" must be made between two calls to P's.

CCS has been applied to provide semantics of programming languages
such as CSP and NIL. Even though CCS provides an elegant formalism for
understanding the meaning of concurrent systems, it is not useful as a

specification tool for real systems. General CCS is Turing -equivalent and

therefore unanalyzable for most properties.

14

3. Communicating Sequential Processes (CSP)

CSP, developed by Hoare[Hoare 85], provides a distributed language with
a sound mathematical background. A CSP program is a static set of explicit
processes. Pairs of processes communicate by naming each other in input and
output statements. Thus, if A wishes to receive a value from B and store it in
the variable x, it will execute the statement B ? x and this statement wili block
until process B executes an output statement by Alexp. Thus, communication

is svnchronous with unidirectional information flow.

Guarded commands are used to introduce indeterminacy. A guarded
command is a conditional statement. The condition of the clause is a boolean
expression. Optionally, it may have an input or output statement. For exam-
ple, a process that merges characters from X, Y and Z and passes them to sink

is specified in CSP as follows:

Merge:: c: character;
*[X7c -> Sipk'c

(]

Y?c -> Sink'c

[

Z?¢ -> Sink!c

]

The name of the process is Merge. * is the repetitive operator which exe-
cutes a command repeatedly until all the guard clauses in the command fail.
X? is an input command. An input/output command fails if the process
named in the command (X, in this case) has terminated. Sink!c is the action
which is executed if the guard is true. || provides indeterminacy and the pro-
cess may choose any of the statements if more than one process is ready to

communicate.

15

e ————————

General CSP is Turing-equivalent and therefore cannot be analyzed

automatically for most properties.

4. Actor Systems

The Actor model is based on the idea of object-oriented computation.
This model was developed by Carl Hewitt and his colleagues at M.I.T. [Hewitt
79]. The discussion below is summarized from [Filman 84]. In an Actor sys-
tem everything is an object called an actor. Actors communicate with each
other by sending messages. Thus Actor system uses non-synchronized com-
munication. in contrast to CCS. There are three kinds of actors: primitive
actors, unserialized actors, and serialized actors. Primitive actors correspond to
the data and procedure primitives of the computer system. For example, 2
and the function + are primitive actors. Serialized actors have a local state
that the actor itself can change, while unserialized actors cannot change their
local state. A typical unserialized actor is factorial which can be imple-
mented in terms of other primitive and unserialized actors. A serialized actor
associates state with a function. Serialized actors process messages serially -

one at a time.

Every actor has a script (program) and acquaintances (data). When a
message arrives at an actor, the actor’s script is applied to that message. For
example, an unserialized actor may accept messages like "add vourself to 3,

and send the answer to actor G0042".

The Actor metaphor provides uniform, independent entities that com-

municate with each other by message passing. Actor model thus provides a

16

powerful formalism for expressing concurrent computation. No structure over
waiting messages (e.g. ordering by send-time), and dynamic creation of actors

poses difficulties for a tractable extensional theory of Actor Models [Milner 80].

5. Path Expressions

Path expressions were first defined by Campbell and Habermann [Camp-
bell 74] as a synchronization mechanism. Using path expressions, a program-
mer can specify all constraints on the execution of operations. Code to enforce
these constraints is generated by the compiler. The syntax of a path expression
is:

path path_list end
A path_list contains operation names and path operators. Path operators
include ”,” for concurrency. ;" for sequencing n:(path_list) to specify up to n
concurrent activations of path_list, and "[path_list]" to specify an unbounded
number of concurrent activations of path_list. For example,

path deposit, fetch end
places no constraints on the execution of deposit and fetch.

path deposit; fetch end

specifies that each fetch be preceded by an activation of a deposit. Synchroni-

zation constraints for a bounded buffer of size N are specified by
path N:(1:(deposit); 1:(fetch)) end

This mechanism was incorporated in Path Pascal. One of the main prob-

lems path expressions have is that it is difficult to include synchronization con-

17

straints that depend on the state of the resources.

Another formalism called COSY (Concurrent System) [Lauer 79] was
inspired by path expressions. A path expression, referred to as a GR-path, is
defined as follows: A GR-path is a string P=P,P,..Pn where each F; is an R-
path. An R-path is a sequential constraint on the system expressed as a regular

expression. Informally, if we think of P; as describing the constraint ¢; then

the GR-path P describes a constraint ¢, and ¢, and ..c,.

It can be easily observed that since each R-path is a regular expression, a
GR-path is just an intersection of regular expressions. In other words, a GR-

path can model only a finite state system.

6. S/R Model

The S/R model is a state machine approach to specification and analysis
{Aggarwal §7]. An S/R system consists of one of more processes. A process P

is defined over a boolean algebra L as a five-tuple P = (\', S, o, M, 1) where:
e Vs aset of states of P

e Sis the set of selectionsof P,SC L

e o is the selector function of P, g:V'—25

e M\ is the transition matrix of P, AMf:V' XV =L

e Iis the initial state of P, JeV'.

The selector function associates with each state s the set of possible selec-
tions o(s) that can be made from state s. In our description, the selections

will appear in curly brackets next to the state. The transition matrix is like an

18

adjacency matrix of a directed graph with vertices V where the nonzero enti-
ties are actual labels describing the conditions for a transition to be enabled.
Given an edge label I=M{v,w) from state v to w, if the selection of a process
is s in state v, then s.{5£0 means that the transition to w is possible. One can
define a "calculus” of the processes so that the product of a process is again a

process. Given processes P;,..,Pn with P;=(V,S;,0,,M,.I;), the product of

n
these processes is defined as P = & P;=(1",S,0,M,I) where:
t==]

n
o o= p; 0y

1=1

. I=x1I

=1

For example, consider two individual processes A and B that do not wish
to be in the same room of a two room house consisting of an ATTIC and a
CELLAR. A and B can choose to move from one room to the other (indicated
by selections UP, DOWXN) subject to thé constraint that an individual in a
room desiring to remain in the room has priority. The coordination between
A and B can be shown as in Figure 2.2. In order to shov' that A and B are
never both together, starting from the initial state A in ATTIC, B in CEL-
LAR. the product of A and B is computed. The resulting process is shown in
Figure 2.3 in which only the states (ATTIC, CELLAR) and (CELLAR,

ATTIC) are reachable.

19

Process A Process B

[(A:UP)+(A:-DOWN)*(B.DOWN)] [(B:UP)+(B:.DOWN)*(A:DOWN)]
/P ATTIC {UP, DOWN} ATTIC {UP, DOWN}

|(BDOWN) [(A:DOWN) [(ADOWN) [(BDOWN)

savey \) B “(B:UP) *(A:UP)

(A DOWN)+(A-UP)*(B:UP)] |(B:DOWN)+(B:UPJ*(A:UP)]

Process P*
(A-UP)*
{ (BDOWN)
/P ATTIC ¥ CELLAR

(AUP)* / (A:-DOWN)

!

(B;Dowf\\') *(B:UP)
\
\
O CELLAR ¥ ATTIC

I_‘/
{A-DOWN)
*(B.UP)

Figure 2.2: An example of S/R model

Since an S/R process has a finite number of states and a finite number of

selections. an S/R process is theoretically equivalent to a finite state machine.
The ability to label an edge with any boolean formula leads to a concise
representation of siany problems. This feature, however, also makes it difficult

to provide an algebraic characterization of sequences of selections made by a

S/R system. In addition, the system executes in two phases - selection and

resolution. All processes make their local selections and then the global resolu-

tion is done. This paradigm may not be appropriate for specifying an asyn-

chronous system with more than two processes.

20

7. Other Systems

Many other concurrent models have been developed for concurrent pro-
gramming. Among Von Neuman languages are Ada [Ada 83}, SR [Andrews
82]. Occam [INMOS 84], PLITS [Feldman 79|, Concurrent Pascal [Brinch Han-
ser 73], Concurrent C [Gehani 84] and Distributed Processes [Brinch Hansen
78]. In addition, there are data-flow languages [Ackerman 82} such as VAL,
and applicative languges such as FP [Backus 78]. Since in this thesis we focus

on automatically analyzable models, none of these models suits our purpose.

Many models have been proposed to study the semantics of concurrency
and nondeterminacy. Some of these are Nivat's transition systems [Nivat 82],
Winskel's event structures [Winskel 82], Pratt's pomsets [Pratt 82], Kahn's
model [Kahn 77], Concurrent Transition Systems [Stark 87] and input/output
automata [Steenstrup 83]. These models are useful for understanding semantics

of concurrency, but their usefulness as specification tools remain to be seen.

8. Conclusions

All the above models have some good ideas and are suitable for some
applications but the diversity shows us that there is no consensus about the
right way of modeling concurrent systems. For implementation of concurrent
systems, a model should have Turing-equivalent power so that all partial
recursive functions are expressible. Thus we believe that Petri nets, finite state
automata and derived models such as S/R model and Path expressions are
inadequate for concurrent programming. Ada, CCS, and CSP are more suit-

able for concurrent programming with synchronous messages, whereas Actors

21

and PLITS [Feldman 79] are more suitable for programming with asynchro-
nous messages. Programs written in such languages can be proven correct

only manually.

Before the actual implementation of the concurrent system, it is desirable
to specify the crucial features of the system in some simple model which can
be analyzed automatically. Petri net, COSY and S/R can be useful at this
phase of software development. Petri nets have the advantage of being able to
model unbounded number of states impossible to model in COSY and S/R.
Petri nets, however, get very complex with an increase in the number of
processes. This is because Petri nets do not support modularity for specifving
concurrent systems with synchronous communication. COSY and S/R support
modularity for synchronous communication and thus there is a need for a
Petri net equivalent model with the modularity of COSY and S/R. The

STOCS model, we believe, fills this need.

22

CHAPTER 3

The STOCS Model - Basic Definitions

1. Introduction

Concurrent languages such as Ada [Ada 83], CSP [Hoare 85] and Argus
[Liskov 84] have good expressive power but any system that is specified using
these languages can only be analyzed manually. As concurrent systems are
difficult to design. the simplest of them can bave subtle errors. To avoid these
errors, we need to capture essential aspects of the system in a model and then
analyze it for correctness. Models for concurrent systems that can be analyzed
automatically have less expressive power than programming languages. They
can be categorized roughly into two groups: algebra based and transition

based models.

The algebra based models specify all possible traces of concurrent systems
by means of algebraic operations on sets of traces. Examples of such models
are path expressions [Lauer 75], behavior expressions [Milner 80] and extended
regular expressions. Examples of tools to analvze the specifications based on
such models are Path Pascal [Campbell 79], CCS [Milner 80] and Paisley [Zave
85]. Some of the commonly asked questions in such formal systems are: Is s a
possible trace of the concurrent system under analysis? Is S|, a concurrent sys-

tem, the same as the concurrent system S,?

The transition based models provide a computational model in which the
behavior of the system is generally modeled as a configuration of an automa-

ton. Examples of the transition oriented models are finite state machines

23

[Hoperoft 79), S/R Model [Aggarwal 87}, UCLA graphs [Cerf 72], and Petri
nets [Reisig 85]. Examples of modeling and analysis tools based on these
models are Spanner [Aggarwal 87], Affirm |Gerhart 80} and PROTEAN [Bil-
lington 8&8].

In this chapter, we present a transition based model called the Synchro-
rous TOken based Communicating State(STOCS) model. This chapter is
organized as follows. Section 2 presents the STOCS model and many examples
that can be modeled as STOCS machines. Section 3 describes a STOCS
machine as a generalization of a finite state machine. Section 4 treats a
STOCS machine as an acceptor of strings and describes its language. Section 5
describes deterministic STOCS machines which can be easily simulated to
che .. for acceptance of a string. Section 6 describes the semantics of a
STOCS machine by defining its language. Section 7 presents some paradigms

for modeling by the STOCS model.

2. Synchronous Token based Communicating State(STOCS) Model

Informally, the STCCS model has five concepts - unit, place, token, *-
place and synchronous handshake. A STOCS machine consists of one or
more units. A unil is used to model a single process or a set of non-
interacting processes. Each unit is an extended version of a finite state
machine consisting of places and arcs between them. Tokens are used to
mode] processes or data items. A *-place models an unbounded number of
processes or data items. Synchronous handshake is used for modeling interac-

tion between processes. All executions in a STOCS machine take place in a

24

svnchronous manner.

Formally, a STOCS machine M is a set of upits (U,,U,,..,U,) where each

unit is a five-tuple, i.e. U; = (P,.C;,L; .6, ,F;} where:

P; is a finite set of places,

C.

; is an initial con figuration which is a function from the set of places to

natural numbers IN and a special symbol '*', i.e. C;:P;—(INU{*}). This
function represents the concept of lokens which may be thought of as
residing in places. The symbol '* represents an infinite number of tokens.
The place which has * tokens is called a *-place. Other places are called

simple places.
L, is a finite set of handshake labels

6, CP; xT;U{¢} X P;.

F; is a set of final places, F, CP;.

The configuration of a STOCS machine can change by the following

handshake rules (erecution rules).

(1) A handshake with label @ is said to be enabled if for all units

U,=(P;,C;,X,;.8; .F;) such that aeZ; there exists a transition (p,,a,p,)€b;
with C;(p;)2 1. Informally, a handshake occurs simultaneously in all units
which have that handshake in their handshake sets. Thus in example 3.1,
Figure 3.1, req is enabled only if both p, and pg have tokens.

A handshake a may take place if it is enabled. This will result in a new
marking C'; for all participating units, and is defined by

Ci(p)=Ci(pe)—1

25

Ci(p)=Ci(p))+1.
A *-place remains the same after addition or deletion of tokens. Figure
3.1 also shows the configuration of M after the execution of handshakes

pre and req.

(3) If multiple handshakes are enabled, then any one of them can execute.
For example in Figure 3.1(b) either pre or crit can fire. If a bandshake is
enabled in such a manner that it can fire in multiple ways, then the
machine chooses the way in an oracular manner. This is analogous to a
non-deterministic finite state machine accepting a symbol that is labeled

on multiple out-going arcs.
Example 3.1 : Mutual Exclusion Problem

As an example of a STOCS machine, consider the mutual exclusion prob-
lem. where at most one process can execute the critical region. Each process
does some pre-critical section processing, requests the permission to enter criti-
cal section, executes critical section, releases critical section, and then does
some post-critical section processing. No two processes can be allowed to be in
the critical section at the same time. A centralized solution can be expressed
using a STOCS machine M as follows. M consists of two units, i.e. Af=(U,U,)

where:
Uy=(P\E, C 6,.F,). Ug=(Pp.E,.C1,6:.F,)
Py=(py.p2,p3.p4-Ps), Poa=(ps.p3)

‘._',‘,=(pre,req,cril,rel,post), 22=(req.re1)

26

C',=(*,0,0,0,0), C'»=(1,0)
6]= { (P 1 pre ,Pg),(P'.h"eq P])'(p.?.'crit J’{)»(P«"el,Ps),(Ps,POSt ’pl)}

bs={(pg.req.p7).(p7.rel ,pg)}

Fy={p,},Fa={pe.rs}

{" } req

Pf req

e-

2 = = \

(a) . *,poq crit «D@(j
\p,g re 5>

P \ \rel /
/

Fs’ ' 4

l execution

()—J{) req

re; —

(b) * ES cnt\lr (f\ ,/o\}\)
\'A\&Qo‘l PR

P \‘z/\ rel / \) \P" P7

Figure 3.1: A STOCS machine for Mutual Exclusion

U, corresponds to any arbitrarily large number of processes that may be
interested in executing the critical region. A process can execute pre
handshake whenever it wants as pre does not require any coordination. Execu-
tion of req, however, requires participation of the coordinator process, which is
possible only if the token is in pg. U5 corresponds to a critical region server
which grants the permission needed to enter the critical region. A token in p,

indicates that some process is executing the critical region.

The graphical representation of the STOCS machine for mutual exclusion

is shown in Figure 3.1. Each place is represented by a circle, and each element

27

of & corresponds to a directed arc between a pair of circles. The initial
configuration (alternatively called marking) is represented by placing the
appropriate number of tokens in each circle. The number and position of

tokens may change during erecution.
Example 3.2: Producer Consumer Problem

This problem concerns shared data. The producer produces items which
are kept in a buffer. The consumer takes these items from the buffer and con-
sumes them. The solution requires that the consumer wait if no item exists in
the buffer. A slight variant of this problem assumes that the buffer is bounded
by n. The so]utioﬁ to both problems expressed in the STOCS model is given in

Figure 3.2.

v, U, vs
s So 83 84 Sg 6
proa'uce put ttem g/et_zt\e;n
wO— -0 &= @D
S pul_iler nem o get_item S onsum
Producer Buffer Consumer
U, U, U3 s
8 8o 83 S4 Ss 6
produce ul item get ttem
©OL 1D O O -
oD 02 O
put_item get_ :tem consum

Figure 3.2: A STOCS Machine for Producer Consumer Problem

For both the problems, the consumer can execute gel_ttem only if there is
a token in the place p,. If the buffer is unbounded, the producer never has to
wait, whereas if the buffer is bounded, the producer may have to wait for the
buffer to become empty (that is, for a token to be present at the place p; of

the buffer). Thus, the number of tokens in the place p; represents the number

28

of available buffers and the number of tokens in the place p represents the
number of filled buffers. Note how the *-place is used to represent an

unbounded number of available buffers.
Example 3.3: 2-out-of-3 Memory Problem

The 2-out-of-3 problem is a good abstraction for many resource conten-
tion problems. Assume that a memory scheduler has three memory blocks and
that- any process requires two memory blocks to execute. The solution for a
system with two processes is given in Figure 3.3. We place two token in the
place s; to signify two processes and three tokens in the place sg to signify
availability of three memory blocks. This example illustrates how multiple
tokens can be used to represent multiple identical processes or multiple identi-
cal passive resources such as memory blocks.

U1 Ue

34

()

/
- mem
mom_ -~ S 88 mem

el - 85 &b
ot (_J &7
‘_/\.¢ /v \ref")/

el A

\~

Figure 3.3: A STOCS Machine for 2-out-of-3 problem

3. Relationship of STOCS machines with Finite State Machines

In this section, we describe the STOCS machines in greater details by

comparing its features with that of finite state machines.
(1) Current State vs Current Con figuration

There is no concept of a current sfale in a STOCS machine, as there is in

29

a finite state machine. Tokens are associated with places and can be thought of
as residing in the places. A transition arc is said to be enabled when its tail
has at least one token. A tramsition occurs by moving one token from its tail
to its head. All tokens are identical and if there is more than one token in the
tail, any one of the tokens may be moved. This has the advantage of ease in
representing multiple resources, which may be active, such as processes, or
passive, such as memory blocks. A configuration of a STOCS machine is a
specification of the number of tokens in each place within each unit. The
number of tokens in a place can be any finite positive number or a special
symbol - *. The symbol * is used to represent an infinite number of tokens. If
the number of tokens in a place is "*’, it will always be '*' since we can add or
subtract any finite number from infinity. These places are useful for modeling
unbounded variables as in Example 3.2 and to model forks and joins as shown
in Figure 3.4.

Parent Process

Q fork C> (/D Join :

Children Processes
Jork

O @ O

Joim

Figure 3.4: Modeling of fork and join in the STOCS Model

30

(2) Labeling of Transitions

As in finite state machines, each transition is given a label. All labels are
derived from a finite set of symbols, ¥, the handshake set of the STOCS
machine. If two or moré units have transitions labeled with the same symbol,
then these transitions must occur simultaneously, i.e. all these units must make

the transition. This is the only form of interaction among the units.
(3) Power of a unit vs Power of a Finite State Machine

If a unit does not have any *-places then the number of tokens within the
unit will be fixed since transitions only move tokens from one place to another.
We can think of such a unit as a number of identical FSMs operating in paral-
lel. Each FSM has the same set of states and transitions as the unit. Each
token represents the current place of one FSM. When the unit makes a transi-
tion, moving one token from, say, place A to place B - one FSM with its
current place A makes a transition to place B. Since all FSMs corresponding
to a unit are identical, it does not matter which one of them makes the transi-
tion. A finite number of identical FSMs can be simulated by a single FSM:
therefore, a unit with no *-places is no more powerful than an FSM since the
number of states is finite. In fact, a unit with n places and m tokens can be
converted into an FSM with no more than n™ states.

*.places give a unit more power. We can count up to arbitrarily large
numbers using *-places. But within a unit, multiple *-places do not yield any
additional power. If there is more than one *-place in a unit, we can merge all

of them into one *-place. All transitions entering or leaving any of the original

31

*-places will now enter or leave the new *.place, because * represents infinity
and no record can be kept of the number of tokens that have entered or left

the state.
(4] Connectivity of the Graph

Note that unlike FSMs a unit need not necessarily be a single connected
graph. If an FSM consists of more than one connected component, all com-
ponents which do not contain the initial state can be deleted since these states
are unreachable. In a unit we can have multiple components and each of these
components can have tokens which move about within them. Movement of
tokens within different components of the same unit is completely independent
and need not syvnchronize with each other. However, tokens moving in

different units must interact.

4. The Language of a STOCS Machine

In this section, we treat a STOCS machine as an acceptor of strings. We
define the language of a STOCS machine and provide the motivation of its
use. We also show that a class of STOCS machines called deterministic

STOCS machines is particularly easy to use as acceptors of strings.

To use a STOCS machine as an acceptor of strings we need to define a
certain initial configuration and a set of final configurations. A string is
accepted if the STOCS machine starts from the initial configuration and
arrives at one of the final configurations after making the transitions
corresponding to the symbols in the string. (Obviously the string must be over

the alphabet X). Instead of specifying the set of final configurations by

32

ennumerating them we extend the definition of acceptance from finite state

machines. We define a set of final places in each unit.

Definition: A configuration of a STOCS machine is a final configuration if
there are no tokens in any non-final place.(i.e., all tokens in all units are in
final places). By definition, all *-places are final places since the number of

tokens in a *-place can never go to zero.}

a

= N~ .
,/,*'w; () unit 1
\\J'\\b__/\/

sl s2

A ps

/ > (>

v — Y —_
[0 & 07N wmit2
. ' \

_— =

s3 s4

Figure 3.5: A STOCS machine accepting a"cb"

Consider the example shown in Figure 3.5. This STOCS machine consists
of two units and its is alphabet ¥ = { a,b.,c }. The first unit is formed by the
places p; and p,. p, is a *-place, and the other unit consists of places p; and
P4 Initially there is one token in place p;. The final places of the system are
p; (since it is a *-place) and p,. Since symbols a and b are shared between the
two units, transitions on a and 6 must be synchronized. The symbol ¢ is not
present in the first unit and can occur any time its transition is enabled in the

second unit.

t If we allow *-places to be non-final places, then no string will be accepted by a STOCS
machine.

33

This STOCS machine accepts the language { a"¢b” in>0}. After a"
has been accepted, there will be n tokens in place p,. The configuration of
unit 2 will be identical to its initial configuration. On accepting c, the token in
unit 2 will move to p,. On each b, one token will be removed from p,. When
the number of b's becomes equal to the number of a's seen earlier, p, will
become empty. This is an 'accept’ configuration because places p, and p, will
have no tokens. Note that unit 2 ensures that the string accepted is of the
form a ¢b” while unit 1 ensures that #a=#b. One of the strengths of the
STOCS model is its ability to use different units to model conceptually

different properties of a language.

Definition: The language of a STOCS machine is defined as the set of all
strings that are possible sequences of handshakes from the initial

configurations to an accepting configuration.

For example. the language of the STOCS machine in Figure 3.6 is
{a"b" | n >0}. The motivation for the use of languages comes from the follow-
ing:

1. Analysis: The language of a STOCS machine characterizes all sequences of
actions that are possible in the system. A large class of interesting questions
can be posed in language-theoretic terms. Some of these questions are: Is s a
member of the language L, 1.e. is the following string of computation feasible ?
Is there a string that satisfies the temporal logic formula T? Is there a string

which contains s as its substring ?

2. Characterization: The language of the STOCS model provide us with a

34

unit 1

//"a\-.

()

v

(/ o \/\ b ?O unit 2
83 s4

Figure 3.6: A STOCS machine accepting a"b"
way of slue(~i1:)'ing the behavior of a STOCS machine and we may chose to con-
sider two machines equivalent if their languages are identical. Such a charac-
terization gives us a chance to optimize a STOCS machine. Given a STOCS
machine, one can reduce it to another STOCS machine by means of language
preserving transformations. The new STOCS machine may be more desirable

because it has less places, less units or more concurrency.

3. Synthesis of STOCS Machines: As we will see in Chapter 4, we can
synthesize a STOCS machine given its specification in terms of concurrent reg-
ular expressions which are algebraic expressions on sets of strings. In general.
given any form of specification of the language of a system, it is useful to gen-

erate a STOCS machine that accepts it.

5. Deterministic STOCS (DSTOCS) Machines

To check the acceptance of a string in a finite state machine, we simulate

35

the machine on the string. If it is deterministic, we need only keep track of one
current state during the simulation. If it is non-deterministic, we need to
examine many possible paths or equivalently keep track of a set of possible
current states. A sufficient condition for a finite state machine to be deter-
ministic is that all arcs leaving a particular state have distinct labels and that

there be no arcs labeled ¢.

A STOCS machine is deterministic if, when simulating a string we need
to keep track of only one “current configuration”. This means that in any
reachable configuration accepting a particular symbol leads to only one possi-
ble next configuration. With this motivation, we define a deterministic STOCS
(DSTOCS) machine as a STOCS machine such that
(1) If a unit has exactly a single token then all arcs leaving a particular place
have distinct labels and there are no arcs labeled ¢. Such .a unit is equivajent
to a deterministic finite state machine.

(2) If a unit has multiple tokens. then it must be free-labeled. A unit is free-

labeled if it has distinct labels on all of its arcs and there are no ares labeled ¢.

Simulation of a DS™OCS machine requires remembering only a single
configuration because on a given symbol a unit with a single token can move
to only one possible place and a upit with multiple tokens has only one arc
labeled with it. The STOCS machine in Figure 3.6 is deterministic because
unit 2 has a single token and it satisfies our condition for units with single

token, while unit 1 is free labeled.

Note that units with single tokens are essentially finite state machines and

are therefore good for putting regular constraints on the language. Such units

36

are, however, not good for counting which is done by units which are free-
labeled. A STOCS machine which consists of only free-labeled units is called a
Free Labeled STOCS (FLSTOCS) machine. (terminology borrowed from Petri
Net theory).

The STOCS machine in Figure 3.5 is a FLSTOCS machine because each
arc in every unit has a unique label. The STOCS machine in Figure 3.6 is not
an FLSTOCS machine because unit 2 has two arcs labeled 6. FLSTOCS
machines are good only for counting and may not even accept finite languages.
We show that there can be no FLSTOCS machine accepting
P = {¢,a,ab,abb}.

To show this result, we need the following definition and Lemma.
Definition: A language P is a prefir closed language if for any s that belongs
to P all prefixes of s also belong to P. Note that a prefix closed language must
contain ¢. Languages {¢.a,aa,aaa,..} and {¢,a.ab} are prefix closed. Language
{e.ab} is not prefix closed because it does not contain the string a, a prefix of
ab.

Lemma 3.1: For any prefix closed language P, if an FLSTOCS machine S
accepts it then it is also accepted by a FLSTOCS machine S’ with only final
places.

Proof: Construct S’ by deleting all non-final places in S. Clearly
L(S')CL(S), since a path that can be traced by tokens in S’ can also be
traced in S.

Also L(S)CL(S’). This is because any path that is traced for accepting a

37

string in S cannot pass through a configuration in which a token is in a non-

final place, otherwise the set will not be prefix closed. Q.E.D.

Theorem 3.1: There is no FLSTOCS machine accepting the language

P={e.a.b.ab,abb}.

Proof: Assume, if possible, there exists a FLSTOCS machine S that accepts P.
Since P is a prefix-closed language, by Lemma 3.1, we can convert it to a

machine which does not have any non-final places.

Since the string ba does not belong to the language, after a b has occurred
in the input string, at least one arc labeled a should be disabled. The only
way an occurrence of b can disable a transition labeled @ is by removing all
tokens in the source place of an arc labeled a. For this to happen there must
be an arc labeled b leaving this place. This means that after the first b appears
in the input string, the arc labeled & will also be disabled since there will be no

tokens in its source place. Hence S will reject the string abb. Q.E.D.

From the above discussion, we note that a DSTOCS machine combines
capabilities for checking that symbols are in proper sequence by means of reg-
ular sets, and for checking that symbols are in proper count by means of
FLSTOCS machine. As an application of DSTOCS machines we show a
DSTOCS machine in Figure 3.7 which accepts all valid arithmetic expressions.
Unit 1 is a finite state machine which checks the sequence of all symbols
without counting them. Unit 2 uses a *-places to count the number of

parentheses. :

38

unit 1

(%

+, .
(0~>‘\' id 77N TN
K ——— ‘\\\) id k unit 2

Figure 3.7: A DSTOCS machine to Parse Arithmetic Expressions

6. Semantics of the STOCS Model

In the following section, we provide an extensional theory of STOCS
machines. Our theory of concurrent processes is built on following assump-
tions:

(1) Non-simultaneity of Events: We assume that two events cannot be

observed simultaneously. If the simultaneity of a set of events is impor-

tant (e.g. in synchronization), we represent the set of events as a single
event occurrence. lf the simultaneity is not important, we allow
occurrences of gvents to be recorded in any order. Milner, who uses the
same assumption in his proposal of CCS, justifies it by quantum theory
which states that the flow of information is bounded by the speed of light
and therefore if two events happen simultaneously, they will be recorded
at different times by the observer. This assumption also makes the entire

theory more elegant and tractable.

39

(2) Atomicity of an Event: In this theory we will ignore detailed tim-
ing consideration of events, and each event will be considered atomic in
pature. Thus, no analysis can make an assumption about the time dura-
tion of events. A time-consuming action is represented by a pair of events,
the first denoting its start and the second denoting its end. The interval
between these events represents the duration of the event and it may

overlap with other events.

(3) Non-probabilistic Analysis: We will not make any distinction
between two systems that show the same possible behavior but each
behavior with different probability. For example, a coin which on a toss
shows h;ead with probability 0.6 is considered equivalent to a coin which
shows head with probability 0.5 but different from coins which show head

with probability either 0 or 1.

(1) Non-randomness in Execution: We call 2 machine non-random if
for any string. the machine either accepts or reject the string, but will
alwavs return the same answer. Thus the set of strings that are rejected
is the exact complement of the set of strings that are accepted. STOCS
machines that can return different answers for the same input at different
times are called Uncontrollable STOCS (USTOCS) machines and are the
subject of Chapter 6.
With above assumptions. we are ready to define equivalence of two
STOCS Machines. We call two concurrent systems equivalent if an external
observer cannot distinguish between the two systems no matter how different

their internal structure. The observer (or environment) is allowed to give an

40

input string to the machine and observe whether the machine accepts or
rejects it. Since for deterministic processes, a string is always either accepted
or rejected, all strings that do not belong to the acceptance set are always
rejected. The external behavior of these processes, therefore, can be character-
ized as a tuple (¥ , L) where ¥ represents the set of events that the process
engages in and L is the language of the STOCS machine. Formally,
Definition: Two STOCS machine M, and M, are equivalent if their alphabet
and language is the same.

The alphabet of a machine is the set of events a machine can possibly
engage in. For example, the machine in example 3.1 can only engage in {pre.
req. crit, rel, post} and therefore cannot engage in event puf_item. The fol-
lowing STOCS machines are considered equivalent. Both of them ,consist of a
‘ single unit as shown in the Figure 3.8 The behavior of both the machines can
be characterized as ((a,b.c).(ab,ac)). On the other hand, the machines shown
in Figure 3.9 are different because their behaviors are ((a,b,c),(})and((a,b).())

respectively.

7. Modeling by the STOCS Model

In this section. we provide paradigms for modeling by the STOCS formal-

ism.

7.1. Event and Conditions

A condition is modeled using place, and events are modeled using

handshakes. An event that depends on conditions of multiple entities is shared

41

L ={ab ¢} b @

a
NP
\ A
O——0
Figure 3.8: Equivalent STOCS Machines

L ={ab, ¢} m
N

/

S = {q, b) C)

Figure 3.9: Different STOCS Machines
by multiple units. For example, consider the problem of modeling a simple

machine shop. Various conditions and events for the system are as follows.

42

condition:

sl:
s92
s3:
$5:
s6:
- events:
el:
e2:
ed:
ed:

\ ‘//

order arrived and waiting

2: order being processed

order complete
machine shop waiting
machine working on the order

an order arrives
processing starts
processing completes
order delivered

Orders

S ON

Machine

e2

/O OO

Figure 3.10: A STOCS machine for machine shop modeling

Figure 3.10 shows a STOCS machine for modeling the machiue shop. Let

us consider a more complex situation to bring out the advantages of modular-

ity in the STOCS model.

The machine shop may have three machines - M1,

M2 and M3. It may have two operators F1 and F2. An order needs two

stages of machining. First, they must be machined by M1 and then by either

M2 or M3. F1 can operate M1 and M2 while F2 can operate M1 and M3. Fig-

ure 3.11 shows the modeling by a Petri net and Figure 3.12 shows its modeling

by a STOCS Machine. In the STOCS machine the communication is hidden,

each process is specified independently. This means that it is easier to under-

stand and write specifications in the STOCS model. It is also easier to specify

a partially developed system.

43

el0

el

Figure 3.11: A Petri Net for Complex Shop modeling

7.2. Concurrency and Choice

The concurrency is present in the model as more than one transition can
be enabled at one time. In Figure 3.13, @ and b model concurrency as they
can be fired in any order. The choice is modeled in the system by means of
multiple arcs emanating from a single node. For example, in Figure 3.13 either

a or b can fire but not both.

44

es

O0“J

, e4 es| €5 Operators
e8 € e9

M1 M

2 M3
© © © |
e2 e4 e6 e8 e7 e%iachmes
el €5
O O O

Figure 3.12: A STOCS Machine for Complex Shop modeling

el

7.3. Linear Constraints on the Language

We can also model systems specified by constraints posed on their event
sequences. One of the main weaknesses of the finite state model was its inabil-
ity to count an arbitrary number of instances of an event. Thus it cannot
accept languages L = {a".b" | a,beX,n >0}. The language L can be written
as the conjunction of two constraints:

(1) All a’s precede all b's.
(2) the number of a's = the number of b's

The first constraint can be checked by a finite state machine corresponding to

45

Concurrency

Figure 3.13: STOCS Machine representing Choice and Concurrency

the regular expression a*b*, but the second constraint can not be checked by a
finite state machine due to the pumping lemma. If N, represents the number
of a's in the string and N, represents the number of b’s in the string, the
second constraint can be written as n,=n;. Figure 3.7 shows a STOCS
machine for L with two units, one for each constraint. To illustrate the model-
ing power of STOCS machines, we also show the modeling of following con-
straints in Figure 3.14.

(1) n,4+n,=n,

(2) n,=2n,

7.4. Interaction Between Multiple Systems

It is easy to capture the interaction between multiple systems by means of
shared handshakes and the definition of synchronous execution. Thus, if M,

and A, are two STOCS machines consisting of (U U, U,) and

46

b~
a /7/\/ \./)\ b
unit 1 \/7; - b o a @ b A
CHERE e

Figure 3.14: STOCS Machines to model integral linear constraints
(U, 0Y.0"), then the STOCS machine resulting from their interaction is
simply (U'y,..U,,.U",..U,)"). The interaction between these STOCS machines fol-
lows from the definition of synchronous execution. A synchronous handshake
requires that all units with that particular handshake in their handshake set
participate. Therefore. a handshake which could have taken place before com-
position with another STOCS machine may have to wait for units in the other

STOCS machine to synchronize.

For example, consider a chocolate vending machine. There are two kinds
of events: choe, which is the dispensing of a chocolate, and coin, which is the
depositing of a coin by the customer. The machine owner specifies that the
number of choc events should be less than or equal to the number of coin
events (Figure 3.15). The customer, on the other hand, will not deposit a coin
until he receives the chocolate for his last coin (Figure 3.15). Hence, when

these two machines interact, the only feasible sequence of events is coin choc

47

coin choe elc.

Machine Customer
cotn cotn
\v’/""_'}\ W
ONlaoNo
choc choc

Figure 3.15: A STOCS machine for a Chocolate
Vending Machine and a Customer

8. Conclusions

In this chapter, we have defined a transition based model called the Syn-
chronous Token based Communicating State (STOCS) model. A STOCS
machine consists of units, each of which models a set of non-interacting
processes. We have presented many examples modeled by STOCS machines.
STOCS machines can easily model concurrency and synchronization making
them useful for specifyving concurrent systems. We have shown how STOCS
machines can act as acceptors of strings. We have, thus, defined the language
of a STOCS machine. Based on the language and the alphabet of a STOCS

machine, we have defined the equivalence between two STOCS machines.

48

CHAPTER 4

An Algebraic Characterization of STOCS

1. Introduction

In Chapter 3, we describe a transition based model to define a process. An
alternative approach to specifying a concurrent system is based on algebra. In
this approach, a system is built by applying algebraic operators on sub-systems
in a well defined manner. An equivalence of a transition based model and an
algebraic model provides us the flexibility of specifying a system in an alge-
braic model and analyzing it in automaton model and vice-versa. For example,
finite state machines and their equivalent algebraic expressions (regular expres-
sions) serve as an excellent vehicle for specification of sequential systems. A
finite state machine has an equivalen{ regular expression, means that the
language characterized by them is identical. Many tools, such as LEX, take
advantage of this equivalence to convert specifications expressed in algebra
based models to transition based models for lexical analysis of programming
languages. In this chapter, we define concurrent regular expressions and show
that they are equivalent to General STOCS. Figure 4.1 summarizes the rela-

tionships between various transition based and algebraic models.

We shall use the following naming conventions. Words in lower case
denote distinct events, e.g. gel, put, a, b. The letters A B,C stand for either
the concurrent regular expressions or the language of a process characterized

by them.

49

This chapter is organized as follows. Section 2 defines concurrent regular
expressions. Section 3 shows examples of concurrent systems modeled by con-
current regular expressions. Section 4 establishes their equivalence with
STOCS machines. Section o describes the languages characterized by con-

current regular expressions.

finite state machines —% units —————> STOCS Machines
regular expressions = unit expressions —> Concurrent regular expressions

Figure 4.1: Relationship between Various Automata and Algebraic Expressions

2. Concurrent Regular Expressions

To motivate the definition of concurrent regular expressions, we note that
regular expressions specify the computation of essentially a sequential finite
state machine, and are unsuitable for expressing the languages of the con-
current machines. To specify the trace of a concurrent system, we have pro-
posed an extension of regular expressions (r.e.) called concurrent regular
expressions (c.r.e.). Recall that an r.e. over an alphabet ¥ is defined as follows:
1) Any @ that belongs to T is an r.e. defined over {a}.

2} 1f A and B are r.e.’s defined over £, and Tp, then A.B (concatenation) and
A+B (or) are r.e.’s defined over £4,ULg, and A* (Kleene closure) is an r.e.

defined over L.

For example, if £ = {a,b} then a”b+b"a,abb,ab+ba are some examples
of regular expressions defined over £. To define concurrent regular expressions

we add the following operations: || , a, []. With these additional operators we

50

define a concurrent regular expressions (c.r.e.) over an alphabet £. A cre. A
is characterized by two sets - its alphabet set (£,), and its language (L,).
Even though a concurrent regular expression is defined over L, we will not
explicitly use ¥ in defining concurrent regular expressions. Any binary opera-
tor over two diflerent alphabet set results in a concurrent regular expression
defined over the union of two alphabet sets. Thus the expression A op B is
always defined over ©,UYg. As a result, we will also treat in this chapter a

c.r.e A svnonymous to its language L4.

2.1. Definition

(1) Any a that belongs to ¥ is a regular expression (r.e.) defined over {a}. A
special symbol called ¢ is also a regular expression defined over {}. If A
and B are r.e.’s, then so are A.B (concatenation), A+B (or), A* (Kleene

closure).

(2) A regular expression is also a unit expression. If A and B are unit expres-

sions then so are 4%, B? and A||B.

(3) Any unit expression is also a concurrent regular erpression. 1f A and B

are concurrent regular expressions then so is A[|B,

Examples of some valid concurrent regular expressions are
(a*b)°||b*c]](ab)® and (ab)®||(ba)?. Some invalid concurrent regular expressions
are (ab)?(bc)® and ((ab)*[J(ac)*)®. These expressions are not valid because
they use the a operator in a manner not permitted by the syntax. Table 4.1

summarizes semantics of all the operators described by an example.

51

Operator Name Result

A+B Choice {ab,ba}

AB Concatenation | {abba}

A* Kleene Closure | {¢.ab,abab,..}

Al Interleaving {abba ,abab,baab baba }
A°. Alpha Closure | {¢,ab,abab,aabb,..}
A{B Composition {}

Table 4.1: Example for A = {ab} and B = {ba}

2.2. Choice, Concatenation and Kleene Closure

These are the usual regular expression operators.
Choice between two set of strings is defined as follows.
A+B=AUB
For e.g. if A = {ab,bc} and B = {a,c} then A+B = {ab,bc,a,c}.
Concatenation of two sets of strings is defined as follows.
AB = {w/u=s.t where seA A teB}.

RNleene closure of a set A is defined as

4= U A

1=0,1,..

Properties of these operators are as follows:

1) A+A=A

2) A+B = B+A

3) A+(B+C) = (A+B)+C
4 A+9 = A

5)A.(B.C) = (AB).C

6) Afe} = A

7)A(B+C)=AB+ AC
8) (.A*)* = A*

Feor details of these operators the reader is referred to [Hoperoft 79).

52

2.3. Interleaving

To define concurrent operations, it is especially useful to be able to
specify the interleaving of two sequences. Consider for example the behavior of
two independent vending machines VM1 and VM2. The behavior of VM1 may
be defined as (coin.choc)* and the behavior of VM2 as (coin.coffee)*. Then the
behavior of the entire system would be interleaving of VM1 and VM2. With
this motivation, we define an operator called interleaving, denoted by |[|. Inter-
leaving is formally defined as follows:
alle=¢||la=a \Yael
a.s||b.t = a.(s||b.t) U b.(a.s||t) \a,beX, s,teX*

Thus, abllac={abac,aabc,aacb,acab}. This definition can be extended to
interleaving between two sets in a natural way, i.e. |

A || B = {w/=seA A teB,wes||t}

For example, consider two sets A and B as follows: A = {ab,c} and B = {ba}

then A || B = {abba,abab baab baba,cba bca bac}.

Note that similar to A || B, we also get a set A || A = {aabb,abab}. We
denote A || A by AR We use parentheses in the exponent to distinguish it

from the traditional use of the exponent i.e. A’=4.4.

Properties of ||

(1) Interleaving is commutative, i.e.,
AllB=B]|lA

(2) Interleaving is associative, 1.e.,

53

AjlBlIC)=(A]B)JIC

(3) Epsilon is the identity of interleaving, i.e.

Al{=A
(4) T:he null set is the zero of interleaving, i.e.

Alle=g¢
(3) Interleaving distributes over choice, i.e.

(A+B) || C= (A]| C)+(B| C)
Due to the fifth proposition, we will use A+B || C to mean A+(B || C) rather
than (A+B) || C. We also give higher precedence to || than ".”. Therefore A.B
[| C would mean A.(B || C) rather than (A.B} || C. It is easy to see that the .
does not distribute over || and vice-versa. The use of the || operator generally
results in a set which is exponentially bigger than its arguments. In terms of
cardinality we note that

(1) lA+B! < [Al + IB! (where + is the arithmetic sum)

(2) 1A.Bl < [Al.IBI (where . is the arithmetic product)

ri+1lyl)
fxltlyl!

(3) tA||BI SE(| \7reA A yeB. This operator, however, does

not increase the modeling power of concurrent regular expressions as shown by
the following Lemma.

Lemma 4.1: Any expression that uses || can be reduced to a regular expres-

sion without || .

Proof: The interleaving of two regular expressions is also a regular expression

[Hoperoft 79]. Q.E.D.

54

For example (ab}|bc) can be written as (abbc+abcb+babe+bcab) and a|b*

can be written as b*ab*.

2.4. Alpha Closure - o

Consider the behavior of people arriving at a supermarket. We assume
that the population of people is infinite. If each person CUST is defined as
(enter.buy.leave), then the behavior of the entire population is defined as inter-
leaving of any number of people. With this motivation, we define an analogue
of a Kleene-Closure for the interleaving operator, alpha-closure of a set A,

denoted by A? as follows:

Al= Al
i=L041,..
In the above example, CUST = (enter.buyleave) CUST® =

{u | we(enter+buy+leave)* #enter > #buy > #leave for any prefix
Fenler=#buys=+#tleave}

We use # a to mean the number of occurrences of symbol a in any string.
Thus if a string = {aabba} then #a = 3 and #b = 2.

Note the difference between Kleene closure and alpha closure. The
language shown above cannot be accepted by a finite state machine. This can
be shown by the use of the pumping lemma for finite state machines [Hopcroft
79]. We conclude that alpha closure can not be expressed using ordinary r.e.

operators.

Intuitively, the alpha closure lets us model the behavior of an unbounded

number of identical independent sequential agents.

55

As T° forms a monoid under . (concatenation), £° forms a commutative
monoid under the operation ||. This is because it is closed under || , || is com-
mutative and associative, and {¢} is left and right identity. As Kleene closure
makes a set closed with respect to concatenation, alpha closure makes a set
closed under interleaving. We will use this intuition to provide an alternative

definition of alpha closure.

Definition: A set A is called closed under inlerleaving, or simply t-closed, if
for any two strings s; and s, (not necessarily distinct) that belong to A, s,{|s,
is a subset of A. By definition € must also belong to an i-closed set.

Examples: {¢}, {e,a,a%a3.}, {s|#a=#b} are example of i-closed sets. As
Kleene closure of a set A is the smallest set containing A and closed under
concatenation, alpha closure of a set A is the smallest set containing A and
closed under interleaving. More formally,

Theorem 4.1: Let A be a set of strings. Let B be the smallest 1-closed set con-
taining A. Then B = A°.

Proof: A® contains A and is also i-closed. Since B is smallest set with this
property, we get BC A®.

Since B is i-closed and it contains A, it must also contain A{) for all i.
This implies that B contains A°. Combining with our earlier argument we get
B = A°. Q.E.D.

The above theorem tells us that as Kleene closure captures the notion of doing

some action any number of times in series, alpha closure captures the notion of

doing some action any number of times in parallel. Note that if a set A is i-

56

closed. it is also concatenation closed. This is because if s, and s, belong to A
then so does s;||s,. and in particular s,.s,. The following corollary provides

us a method of finding .4¢ by showing that the set is i-closed.
Corollary: A set A is i-closed if and only ifA = A°.
Proof: If A is i-closed. it is also the smallest set containing A and i-closed. By
Theorem 4.1, it follows that A = A°,
7 Conversely, A = A® and A® is i-closed therefore A is also i-closed.

Q.E.D.

The above corollary tells us that if a set is i-closed, then its alpha closure is
the same as itsell. As an application of this corollary, we get A°"=A°.

The following Theorem tells us that interleaving, Kleene closure and
alpha closure of i-closed sets remain i-closed. Combining Theorem 4.2 with the
previous corollary, we can find alpha closure of sets that are built of some i-

closed sets.

Theorem 4.2: If A and B are i-closed then so are A || B,A*,A°.

Proof:

1) A || B: Let s, and s, belong to A || B. We will show that s,||s, is a subset

of A || B.
8,€p,|lg, because s, belongs to A || B, for some p,eA,q,€B.

85€p,||g, because s, belongs to A || B, for some p,€A,q.€B.

- 81lls2Cpillallpellge

= p,llp2llg;llg2 (1] is associative and commutative)

= pllg where p=p,||p> and q = q,||g;

57

C A || B (because p C A and q C B as A and B are i-closed)

2) A*: Let s, and s, belong to A*. We will show that s,||s, is a subset of A*.
§) = P,.p2.P3....p,, Where each p; belong to A

8o :-——"q,.qg.q;;....q,,, where each ¢; belong to A

Then s)lls2 = py--pallgr-gm Coill-Pall-01ll--gm

C A (Aisi-closed)

C A~

3) .47 From Theorem 4.1. Q.E.D.

Applying Theorem 4.2, we can easily deduce the following identities.

1) (A||B)°=A||B if A and B are i-closed

2) 4*°=14*if A is i-closed

For example. let CUST, and CUSTg be sets of strings denoting behavior of
customers in supermarket A and B respectively. Both CUST, and CUSTg are

i-closed and therefore, by Theorem 4.2 CUST,||CUSTg is also i-closed.

The above theorem also tells us that the set of all i-closed sets forms a commu-
tative monoid under the operation ||. This is because they are closed under ||
, || is commutative and associative, and {¢} is left and right identit_\f of this
set. As shown below, the other binary operations defined so far do not retain
this property.

Theorem 4.3: If A and B are i-closed then A+B and A.B may not be so.

Proof:

1) A+B: Consider A = {ab}?, B={bc}? Let s;=ab and s,=bc. Both s,

and s, are members of A+B but s=abbces,||s, does not belong to A+B.

58

2) A.B: Consider A = {ab}°,B={bc}°. Let s;=abbc and s,;==abbc Both s,
and s, are member of A.B but s=abbcabbce€s,||s, does not belong to A.B.
Q.ED.
Properties of alpha
1) A°“=A° (idempotence)
2) (4*)°=.A° (absorption of *)

So far, we have five operations on sets of sequences. These are +,.,*, ||, a.

Table 4.2 lists the class of languages generated by using some important sub-

sets of these operators.

Operators Languages
+..]} finite languages
+..5 regular languages
+,..%, || , constrained use of a | unit Janguages

Table 4.2: Operators and Languages

2.5. Synchronous Composition

To provide synchronization between multiple systems, we define a compo-
sition operator denoted by [J. Intuitively, this operator ensures that all events
that belong to two sets occur simultaneously. For example consider a vending
machine VM described by the expression (coin.choc)*. If a customer CUST
wants a piece of chocolate he must insert a coin. Thus the event coin is shared
between VM and CUST. The complete system is represented by VM[JCUST
which requires that any shared event must belong to both VM and CUST.

Formally,

59

AB={wlw/T e4,u/LgzeB}

u'/S denotes the restriction of the string w to the symbols in §. For example,
acab/{a,b} = aab and acab/{b,c} = ¢b. If A = {ab} and B = {ba}, then
A[JB’= ¢ as there cannot be any string that satisfies ordering imposed by both

A and B. Consider another set C = {ac}. Then A[JC = {abc,acb}.
Properties of ||

Many properties of || are the same as those of the intersection of two sets.

Indeed, if both operands have the same alphabet then [] is identical to intersec-

tion.
(1) AJ[A=A (Idempotence)
(2) A[|B= BjjA (Commutativity)

(3) AlJ(B]JC) = (A[|B)]}C (Associativity)
(4) A[]NULL'= NULL. NULL = (£4.6) (zero of {})
(5) A[IMAN = A, MAX = (S, %) (identity of [})
(6) A[J(B+C) = (A[|B)+(A[C) (Distributivity over +)
We next show that (] is a well behaved operator in the sense that on com-
bining two i-closed sets with [}, the resulting set is also i-closed.

Theorem 4.4: If A and B are i-closed then so is A[]B.

Proof: Let s, and s, belong to A[]B. Then
8,/£4€A4 and §,/TgeB.

Similarly, 8,/X €A and s./SgeB.

We will show that 8,]|s2/S,CA and s,|[s./SgCB.

81|ls2/Z4

60

=5,/ 4||s2/X 4 (Restriction distributes over ||)
C A (A is i-closed)
and similarly, 8,||so/Eg=s,/Zplls2/EpCB

Therefore, s,||s,CA[|B. Q.E.D.

Consider, for example, the set of strings denoting the behavior of custo-
mers at a supermarket. That is, POP = {enter.buy.leave}°. Now assume that
for buving an item a customer has to interact with the sales clerk whose
behavior can be written as CLERK == {buy}*. Form Theorem 4.4 we con-

clude that POP [| CLERK is an i-closed set.

3. Modeling of Concurrent Systems

In this section, we give some examples of use of concurrent regular exam-
ples in modeling concurrent systems.
Example: (abc)® [| a*b”c* accepts the language {a"b"¢" | n >0}. Note how
the use of @ operator let us keep track of the number of different symbois that
have been seen in the string. This example shows that the strings that can not

be recognized even by push down automata can be represented by c.r.e’s.

Example: Consider a ball room where both men and women enter, dance and
exit. Their entry and exit need not be synchronized but it takes a pair to
dance. We would also like to ensure that the number of women in the room is
always greater than or equal to the number of men, since idle men can be
dangerous! This system can be easily represented using a concurrent regular

expression:

61

A man'’s actions can be represented by the following sequence:

man :: menler dance mezit

A woman'’s actions as follows:

.woman :: wenter dance wezit

The constraint that the number of women always be greater can be
expressed as:

constraint :: (wenler (menler mezit)* wezit)®

Since any number of men and women can enter and exit independently

{except for the constraint) the entire system is modeled as follows:
man® || woman® || constraint

Example: Consider the office of the Department of Motor Vehicles. Two
tvpes of clients need service, those who need to get their picture ID taken and
those who need to take a test. Clients who need their picture taken first pay
the fee and then get their picture taken. Those taking the test, first pay the
fec. then take the test and then receive the results of the test. Let us sav that
there are two glerks - John and Mary - who serve the clients. John receives
the fee and Mary hands out results, However the camera is so complicated

that it requires both John and Mary to operate it.
The relevant CRE's are :
clientl :: fee piclure
client2 :: fee test result

John :: (fee + picture)*

Mary :: (result + piclure)*

62

DMV :: ((client1)® || (client2)?) | (John) (] (Mary)

4. Relationship between Concurrent Regular Expressions and
STOCS

in this section, we show that any STOCS machine can be converted to jts
equivalent concurrent regular expression and vice-versa. We need to show the
following Lemmas to prove the result establishing the equivalence of STOCS

and concurrent regular expressions.

Lemma 4.2: Any unit with multiple *-places can be converted to an
equivalent unit with a single *-place (see Figures 4.2(a) and 4.2(b)).

Proof: Let U be a unit with multiple *-places. We construct U’, a unit with a
single *-place by merging all *-places into a single *-place. All input arcs and
output arcs in the previous units are combined. If, in the resulting unit, there
is more than one arc with the same label between two places then only one of
them is retained. Since the tokens in *-places do not change and the bag of
transitions enabled for any configuration is identical for U and U’, we conclude
that the Janguage accepted by U is the same as the language accepted by U".
Q.E.D.

Lemma 4.3: Any unit U is equivalent to another unit U’ which has at most
two connected components - one with *-place and the other with a single
token (see Figures 4.2(b) and 4.2(c)).

Proof: From Lemma 4.2, we can assume, without loss of generality, that there
is at most one *-place in U. U may have one or more connected components.

Let the connected component C have the *-place. C may have tokens at some

63

simple places too. As tokens move independently of each other within a unit,
C can be written as two components- one with tokens only in the simple place
and the other with the *-place but no tokens in the simple place. We claim
that -all the connected components with no *-places can be combined into a
single connected component - a finite state machine. This is because there is a
finite number of tukens residing in finite places, resulting in only a finite
number of possible configurations. There is an edge labeled a from
configuration Cy to Cq if and only if configuration €'} can result in C, after
making a transition a. A finite state machine can be simulated by a connected
component with a single token in its initial state. Q.E.D.

0 /—S@;

%

Single unit

Figure 4.2 : Lemma 4.2 and 4.3
Lemma 4.4: Let U be a unit with a single *-place having no tokens in its sim-
ple places. Then its language can be written as a (regular erpression)®.
Proof: Let U=(P,C,X,6F) with C(p;) = *. We construct the finite state
machine A=(P,p;,£.6,F). Let L(X) represent the language accepted by auto-
mata X. We will show that L(U)=L(A)°.

Case 1: L(U)CL(A)°

64

Let a string s belong to the language of the unit U. In accepting s, a finite
number of tokens, say n, must have moved from the *-place to some final
place. Let §,.8,..5, be the strings that are traced by tokens 1..n, respectively,
such: that one of their interleaving is s. Each of the strings s,..8, also belongs
to the regular set. Therefore, their interleaving belongs to alpha-closure of the
regular set.

Case 2. L(4)°CL(U)

Consider any string s in L(A)° This string s can be written as 8,]|s,||..||s,
where each s; belong to A. As s; belong to A, it also represents a path from
the initial place to a final place in U. Hence s can be simulated by n tokens
which simulate s,,..s, respectively. Q.E.D.

Theorem 4.5: There exists an algorithm to derive a concurrent regular

expression that describes the set of strings accepted by a STOCS machine.

Proof:
Clearly it is sufficient for us to derive a concurrent expression for each unit, as
the concurrent expression equivalent to the STOCS will be the concurrent reg-
ular expressions for units composed by the [] operator.

To derive the expression for a unit, we use Lemma 4.3 to convert it into a
unit with at most two components, one with *-place and one with a single
token. From Lemma 4.4, the language of any such unit can be written as

interleaving of a regular expression and at most one (regular expression)®.

For example, to describe the language of the unit shown in Figure 4.2(a), we

first convert it to 4.2(b) by Lemma 4.2. We convert the unit in 4.2(b) to 4.2(c)

65

by Lemma 4.3. There are two connected components in the unit of Figure
4.2(c). The regular expression for the first component with * replaced by a
single token is (a.(b+c))*. The regular expression for the second component is
((tba+ca)*.a)*.((ba+ca)®.(b+c)). Thus, the expression for the entire unit can
be written as (a.(b+¢)°||(((ba+ca)®.a)* ((ba+ca)* (b+c)) Before we prove the

converse of the above Theorem, we need the following Lemmas.
Lemma 4.5: (A||B)° =
(-A]}B) if both A and B are i-closed
{A||B?) if A is i-closed
(A°||B) if B is i-closed
C'® where C is a regular set if both A and B are regular sets
Proof"
(1) Both A and B are i-closed.
By Theorem 4.2, A || B is i-closed.
=> (4||B)® = A || B by Theorem 4.1.
(2) Only A is i-closed.
(A]|B)*=(A°||B)° (because A9=A)
We will show that (A°]|B)"=A||B°
We first show that s€(A°||B)® =» seA||B°
let se(A°||B)”

=> s€9,|l50l/83..8,, where m >0.

g. (a ll”a l'.’"“a ln,”bI)”(a2l|Ia2'.‘”"“2n:”b2)"”"(amlllamZII"amnm'lbm)

66

l y
1 _-—3 / \ A, B i-closed

>

» \ < A B
A B
I
/ \\
s'/ *
a B
A

e \\‘
A s}
l
B
a
l A regular, B regular
(C= AlIB)

Figure 4.3: Lemma 4.5
where a,;€A for i = 1.m and j=1..n;
On rearranging terms, s also belongs to Al|B®
We now show that s€A||B* = s¢(A4°||B)°
Let scA||B°
=> sea|b,||bo]]bs..1Ib,,, wherem >0

C (a]l6))Ilellba)....(c[Ibm)

67

A regular, B t-closed

A i-closed. B regular

C (A]|B)°
(3) Only B 1s t-closed
Similar to (2)
(4) Both A and B are regular => A || B = C as interleaving of two regular
sets is also a regular set. => (A]|B)°=C*
Lemma 4.8: Let A and B be two regular expressions, then A%||B*=(A+B)*
Proof: Let string seA°||B°.
= seayllaall-lla,l1byl[ball..|Ib,, for a;eA i=1.n,
b;eB,j=1.m n,m2>0

C(A+B)° (because each string belong to A+B)

Let string se(A+B)°.
=> secy||call. llc,. where c,eA+B
If c;e4 we call it a;. otherwise we call it b;
on rearranging terms so that all strings that belong to A come before strings
that do not belong to A {(and therefore must belong to B), we get
s€A°||B°Q.E.D..
Lemma 4.7: Any unit expression U is equivalent to another unit expression
which is the interleaving of regular expressions and (regular erpression).
Expressions in these forms are called normalized unil expressions.
Proof: To show this Lemma, we will use induction on the npumber of times ||
or a occurs in a unit expression. The Lemma is clearly true when the expres-
sion does not have any occurence of || or a as a regular expression is alwavs

normalized. Let U be a expression with at most k occurrences of || or a.

68

Then U can be written as U||U, or Uf where U, and U, can be normalized
by the induction hypothesis. We will show that U can also be normalized.
() U=U || Uy

U,=A,||B,° where A and B are some regular expressions

Uy=A,||B,® where A and B are some regular expressions

Therefore, Uy||Uz=(4,]1B,%)]|(44]|B;?)

= (.4,||.-12)II(B,°||32°) (1| is associative and commutative)

= (A4,||-42)|{(B;+B5)° (by Lemma 4.6)

.. U can be normalized.

(2) U=U7

U=Up=(4]|B%)°

where A and' B are some regular expressions.

Since B? is i-closed and A is a regular set from Lemma 4.5, we obtain,
U=4°||B®

=(4+B)? (from Lemma 4.6)

=('? for some regular expression C.

. U can be normalized. Q.E.D.

Theorem 4.6: There exists an algorithm to derive a STOCS machine that

describes the set of strings described by a concurrent regular expression.

Proof: Any regular expression can be converted to a finite state machine by

standard techniques as described in [Hopcroft 79).

Using Lemma 4.7 we can convert any unit expression into the normalized

form. To convert a normalized unit expression into a unit we simply use a

69

r'___—_——t

finite state machine for each regular expression and use Lemma 4.5 to con-
struct a connected component with a *-place for (regular erpression)°.
STOCS is just the union of all units constructed by the above procedure.
Clearly, the STOCS so constructed accepts the same language as characterized

by the given concurrent regular expression. Q.E.D.

Thus, the class of languages accepted by STOCS and concurrent regular

expressions is identical.

Theorem 4.6 provides us the flexibility of specifying a system in terms of
concurrent regular expressions and then converting it to a Petri Net which can
be analyzed for function correctness using the coverability tree[Karp 68§,
reachability algorithm[Mayr 86] and matrix eauations[Murata 84]. Figure
4.4(a) shows an example of a Petri net which is converted to a STOCS
machine shown in Figure 4.4(b). The concurrent regular expression equivalent
to the Petri net is obtained using the STOCS machine and is shown in Figure

4.4(c).

(a) ()

=
L 14
-+
(_g ¢ b
) b ¢
®) & x

(c) (a+be’d)" || (ab’c)®
Figure 4.4 : FLOPN => STOCS => CRE

70

5. Concurrent Regular Languages

From our earlier results we know that the class of language accepted by
STOCS is identical to that characterized by concurrent regular expressions.
The ‘definition of concurrent regular expression is hierarchical as a concurrent
regular expression is defined using unit expressions which are defined using
regular expressions. Regular languages are those set of strings that can be
accepted by a regular expression. Unit languages are those set of strings that
can be accepted by a single unit expression. In this section, we show that the
regular languages are properly contained in the unit languages which are prop-

erly contained in the concurrent regular languages.

65.1. Regular Languages

Theorem 4.7: The unit languages properly contains the regular languages.
Proof: As a finite state machine is also a unit with a single token, unit
languages contain regular languages. To see that the inclusion is proper, con-
sider the language {(a.b)®}. which is accpeted by a unit in Figure 4.5, but is
not accepted by a finite state machine.

a

<®</\) unit 1

Figure 4.5: A unit machine for (ab)°

71

5.2. Unit Languages

All unit languages are also concurrent regular languages. We next show

that this containment is also proper.

Definition: A language is called i —open if there does not exist any non-null

string s such that if { belongs to a language then so does s||t.

Example: All finite languages are i-open. a*,(a+b)*,(ab)® are not i-open
because a,aba,andab are strings respectively such that their interleaving with
any string in the languge keeps it in the languge. Recall that i-closed
languages are set of strings that are closed under interleaving. All i-closed
languages are not i-open and all i-open languages are not i-closed. However,
there are languages that are neither i-open nor i-closed. An example is
a*b*||c* which is not i-open as any interleaving with ¢ keeps a string in the

language. It is not i-closed because abc||abe does not belong to the language.
Theorem 4.8: A unit cannot accept a non-regular i-open language.

Proof: Let L be a non-regular i-open language. Since this language is not
accepted by a finite state machine, the unit should have a *-state. For the
similar reason tokens, must move out of the *-state and must eventually reach
a final state. This implies that there exists a non-null path p from the *-state
to a final state. This implies that for any string ¢ that belongs to L, t]|p will

also belong to L, a contradiction because L is an i-open language. Q.E.D.

For example, consider the language a"b". A 2-stocs for this language is
shown in Figure 4.6. The language is i-open because there is no non-null

string, such that its indefinite interleaving exists in the language. By Theorem

72

4.8, we cannot construct a single unit to accept this language.

Theorem 4.8 tells us that unit languages are properly contained in
STOCS languages. Our example shows that there exists a STOCS machine
with two units - one with a *-state and the other without - which can not be
accepted by a single unit. Now we show that there exists two units both with

*.state which cannot be recognized by a single unit.

b
a c q
b

Figure 4.6: A STOCS machine for (a;b,)%[J(asb, *b,)°

Theorem 4.9: There are i-closed concurrent regular languages that cannot be
accepted by a unit.
Proof: Consider the language L = (a,b;)[[(asb; *b5)® which can obviously be
recognized by 2-STOCS. Assume if possible that it can be recognized by a sin-
gle unit. Since ¢eL, there are no tokens in the non-final places. Therefore any
string that traces a path from a *-place to a final place is also a member of L.
We show that there exists a string which is not a member of L and which
traces a path from a *-place to a final place.

aga,"b,"beL but asa,"**b,"b, does not belong to L for any k >0. This
implies that while making transitions on a, the symbols must move out of *-
place. This implies that there is a path from the *-place to the final place

which starts with a;. Therefore, the machine also accepts a string starting

73

with the symbol a,. No such string belongs to the language. Q.E.D.
From above discussion, we note that

regular C unit C STOCS

6. Conclusions

In this chapter, we have defined an extension of regular expressions called
concurrent regular expressious and have shown that they can be transformed
to STOCS machines. The equivalence of STOCS machines and CRE formal-
ism is comforting as we can specify in one formalism and analyze in the other.
The concurrent regular expression is built of regular expressions and operators
- interleaving, alpha closure and synchronous composition. These operators
concisely capture two notions of distributed systems: concurrency and syn-

chronization.

74

CHAPTER 5

Comparison With Petri Nets

1. Introduction

In this chapter, we do a detailed comparison of STOCS machines with
Petri nets. There are two reasons for choosing Petri nets for comparison.
First. Petri nets have been used extensively in the design and analysis of con-
current programs and are considerably more popular than, say, UCLA graphs
or computation graphs. Second, we have shown in this chapter that, loosely
speaking, the power of the STOCS model is the same as vhat of Petri nets.
Thus, it would be unfair to compare the STOCS model with, say, the Finite
State Machine Model, which is less powerful, or PRAM, which is more power-

ful than the STOCS model.

This chapter is organized as follows. Section 2 compares the complexity of
reachability in the Petri net and the STOCS model. Section 3 compares them
for ease in modeling of concurrent systems. Section 4 compares their

languages.

2. Comparison of Reachability

In this section, we show that the reachability problem is equivalent for
Petri nets and STOCS machines. This gives us confidence that systems that
are modeled as configurations of a Petri net can equivalently be modeled as
configurations of STOCS machines. Instead of showing the equivalence of

STOCS machines with general Petri nets, we show their equivalence with ordi-

-3

(43]

nary Petri nets. Ap ordinary Petri net is a special case of a general Petri net
with the restriction that no place bas multiple input (or output) arcs to the
same transition. We can restrict our focus to ordinary Petri nets because of
the following Lemma due to Hack.

Lemma 5.1 [Hack 76]: The reachability problem is equivalent for general
Petri nets and ordinary Petri nets.

Proof: Hack provides a construction to convert a general Petri net to an ordi-
pary Petri net such that the reachability problem is equivalent. This construec-
tion replaces a place with maximum multiplicity of & by a ring of k£ places
each having multiplicity of 1 (see Figure 5.1). Q.E.D.

Py

_—

Pk P2

ool

P4

Figure 5.1: General Petri net => Ordinary Petri net

To show that the reachability problem of an ordinary Petri net is reduci-
bie to the reachability problem in a STOCS machine, we will construct an
equivalent STOCS structure from a given Petri Net structure. The structures
are equivalent in the sense that any configuration that is reachable in one

structure is also reachable in the other. We also require that the structure of

76

the STOCS model is no bigger than a constant multiple of the size of Petri
net. A single Petri net has multiple STOCS representations, each correspond-
ing to different unit assignments. A unit assignment is a mapping from the set
of places in Petri nets to the set of natural numbers representing the unit
numbers. Intuitively, each place in a Petri net is assigned to a process. A unit
assignment is called consistent if no two places which are input (output) to the
same transition have the same upit number. This constraint is required
because for every transition in a STOCS machine, there is at most one place
per unit that loses (gains) a token. A trivial consistent unit assignment is the
one which assigns every place a different number; hence there always exists at
least one consistent unit assignment.
Theorem 5.1: Reachability problem of Ordinary Petri nets is reducible in
linear time to that of a STOCS Machine.
Proof: (1) Construction of a STOCS machine from an Ordinary Petri net
An ordinary Petri net is converted to a STOCS machine as follows.
Every place in the Petri net is also a place in the STOCS machine (see Figure
5.2). These places, however, may belong to different units. Let N be a Petri

net = (P,T,1,0,M) with the usual meaning of the notation.
We first find a unit assignment function f:P—1,2,..K such that
VLeT .prp2eP: (prp2) CIL) V (p1p2) CO(L)=> [(p1)F# (P2).
This condition implies that places belonging to the same unit cannot be

input(output) to the same transition. It holds trivially if all places belong to

different units

77

We define the STOCS machine S as the set of units U; where t=1..K

Each unit U is defined as follows:

U,=(F;.L;,C;.6;) + where:

e P, contains all the places that are assigned the unit number ¢, and a *-

3

place denoted by sp;.
Pi= {peP | [(p) =i} U {sp;}

e ¥, contains as handshake symbols all those transitions in which places
belonging to unit ¢ participate. It is assumed that each transition has a
unique label.

T.={teT | DpeP;, pel(t)UO(t)}

e The configuration of the STOCS machine (C;:P;—IN}) is the same as the
marking function in the Petri net, i.e.

Ci(p)=M(p) for peF;,
Ci(sp;)=".

o 5, CP;XE;XP;. If aunit has an input place as well as an output place
for a transition, an arc is added between them. If a unit has only an
input place for a transition then an arc is added between the input place
and its *-place. If a unit has only an output place for a transition then an
arc is added between its *-place and the output place. Formally,
6;={(p;t,p) | 31, pjel(t)ap,eO(t)}

U {(pit,8p;) | 3t pjel(t), R pi, pr€F;,p€O(L)}

U{(spi.t,pe) | 3t pe€O(t), 3 pjePip;el(t))

+ We ignore the set of final places as they are irrelevant for the reachability problem.

78

Petri-net STOCS
pl p2 p3 pl p4

QQ o O

/

(B

N4
t . ¥ / 2 5
’—*———Z—‘L J NI)

oL o O o

Figure 5.2: Petri net => STOCS Machine Conversion

*)

The size of the resulting STOCS machine is of the same order as the size
of the Petri net. Also, the transformation of the given Petri net structure can
be done in linear time.

Reachability 1s equivalent in both structures

We next show that any transition that is enabled in Petri net is also enabled in

the STOCS machine and vice-versa. The set of sequences of transitions is

identical for both structures because:

(1) Initially, both the Pelri net and the STOCS machine have the same
con figuration. Note that while considering the configuration of a STOCS
machine we need only consider tokens in simple places, as the tokens in

*-places do not change. More formally, C;=AM V\i.

(2) The set of transitions that ts enabled for equal configurations is identi-

cal.

Let { be enabled in Pgtri Net N.

=>\pel(t): M(p)>1 (by definition of enablement).

79

(3)

We will show that { is also enabled in the STOCS machine.

Let te%;

=> p;eP;: pel(t)UO(t). (by definition of £;)

Case 1. p;el(t)

=> C;(p;)21 (by definition of C;)

=2> t is enabled in C;.

Case 2: p;eO(t) AR preP;piel(t)

=> (sp;.l,p;)€b; (by the definition of &;)

=2> { is enabled in C; since C;(sp;)="",

If a transition is enabled in the STOCS machine then it is also enabled in

Petri net by a similar argument.

Both machines starling from equal configurafions reach equal
con figurations on taking the same transition. On executing the transi-
tion ¢ in Petri net, the new marking M’ is defined as follows:

pel(t)=> M (p)=M(p)-1

peO(t)= Al (p)=M(p)+1

otherwise M'(p) = M(p).

The configuration in the STOCS machine can change only in units that
have t in their L. By the definition of execution in the STOCS machine if
(pit,p,)€d; then

C(p;)=C(P;)-1=M(p;)

and C*'(p;)=C(p,)+1=M(p,).

Q.E.D.

80

(a)

2 < b
(b) Q‘/y) (% i)
A d -_ _ﬂ\—i/)\/

Figure 5.3: Conversion from a Petri net to a STOCS Machine
We now present an example that shows the conversion of ordinary Petri
nets to STOCS machines. The Petri net in Figure 5.3 is converted as follows.
We assign p, and p, to the same unit U/}, as they do not share any transition
for input or output. ps is assigned to U,. Corresponding to transition a we
draw an arc from p, to itself in U,. Since there is no input place for transition
a in U, but an output place p;. we draw an arc from the *-place, sps to p;. A

pseudo Pascal procedure to convert a Petri net to a STOCS machine is given

in Figure 5.4.

81

Procedure Petri_to_ STOCS,
begin

(* Convert general petri net to ordinary petri-nets *)
New_Petri := Hack(Petri); (* using Hack's construction *)

“ (* find a consistent unit assignment *)
(* returns an array color(] such that no two places
that share a transition are assigned the same color

Let there be d colors *)
Consistent_Unit_Assignment;:

(* Construct a STOCS with d units *)
STOCS := (U1,U2,....Ud);

where U;=(P;.E,;.A;.,6;)

(* construct P;'s *)

for all p, do

if color(p;)=c then P,:=P.Up, ;

(* for each unit t construet a *-place s(i) for that unit *)
P;:=P;Usp;:

(* Construct X;'s *)

for each {; do

for each p,el(t;)UO(t;) do
¢ :== color(p;)
Yo=X.Ul;

(* Construct 6;'s *)
for all {, do
for all p;el(t,) do
¢ := color(p;);
if Jp;€0(t,) such that color(p;) = c then
6c:=6cu(pi'1k'pj)
else 6c:=6cu(pi'tk*spc));
for all p,eO(t,) do
if 3 p,el(t;) such that
¢:== color(p;);
6,3=6¢U($p¢-tk,P,');

(* Duplicate Marking *)
Clp,) := M(p;);

end;
Figure 5.4: A Program to convert a PN to a STOCS Machine

82

Corollary 6.1 : The complexity of the reachability problem for a STOCS

machine is at least exponential space.

Proof: This corollary follows from Theorem 3.1 and an earlier result by Lip-
ton [Lipton 76]) which shows that the reachability problem for Petri Nets is of

at least exponential space complexity.

Conversion of reachability in a STOCS machine to that in a Petri net is
complicated because a handshake may occur in a unit multiple times. Thus the
conversion provided in Theorem 3.1 cannot be reversed to provide a construc-
tive proof of this Lemma. While converting a STOCS machine to a Petri net,
a single handshake is converted to transitions, reflecting all possible ways the
handshake could execute. The proof of the Theorem 5.2 shows the procedure

formally.

Theorem 5.2: The reachability problem of a STOCS machine is reducible to
that of a Petri net.

Proof:

Let S = (U,.U,...U,). The Petri Net N = (P, T, I, O, M) where

) P=’DH(P,‘—sp,-)

i=1
The places in the Petri net is the union of all the simple places in STOCS.
e For each handshake symbol in the STOCS machine, we have one or more
transitions in Petri net. Let the handshake a occur in a unit ¢, n, times.
Then the number of transitions required is the product of all n;’s. i.e.

T = {ag} where

sCUé

tom]

83

(1)

(3)

| SNé; I =1 Yi aeX, The above condition states that if a handshake
belongs to a unit then there is exactly one arc from that unit. That is, we

construct a transition for each combination of arcs labeled with that

‘handshake.

Ias)={p;eP| Ip;: (p;.a,p €S}

O(ag)={p;eP | Tp: (ps.a.p;)€S}

M(p)=C;(p) if peF;.

The set of sequences of transitions is identical for both structures because:
Initially, both the STOCS machine and the Pelri net have the same
con figuration. Note that while considering the configuration of a STOCS
we need to consider tokens only in simple places as the tokens in *-places
do not change. Due to the definition of M, the STOCS machine and the
Petri net initially have the same configuration.

The set of transitions thal is enabled in the STOCS machine and the
Petri net for equal con figurations is identical.

Let a5 be enabled in Petri Net N.

=>\pel(ag): M(p)=>1.

=> C;(p)21 (by definition of I(ag))

=2 ag is enabled in STOCS.

It is also easily verified that a transition enabled in STOCS is also enabled
in Petri net.

Both machines slarted from equal configurations reach equal

con figuralions on taking the same transition.

84

On executing the transition { in Petri net, the new marking M’ is defined

as follows:

pel(t)=> A (p)=M(p)-1

peO(t)= M(p)=M(p)+1

otherwise M'(p) = M(p).

The configuration in STOCS can change only in units that have ¢ in their

L. By definition of execution in STOCS if (p;,t,p;)€é; then

C'(p))=C(P;)=1=M(p;)

and C*(p;)=Clp;}+1=AMA1(p;). @ E.D.

Figure 5.5 shows such a construction. Corresponding to the handshake
mem in the STOCS machine, we get the transitions mem ;. mem o). (pemem pe)
and MeM ,. mem pol(psmem p,) 1€ first mem corresponds to the handshake
between U’} and U, with the tokens at p; and py whereas the second mem
corresponds to the handshake with tokens at p, and p;. *-places are removed.
Figure 5.6 gives a procedure written in pseudo Pascal to convert a STOCS

machine to a Petri net.

Corollary 5.2: The class of languages accepted by free labeled ordinary Petri

nets is identical to that accepted by free labeled STOCS(FLSTOCS) machines.

Proof. In the proof of Theorem 5.1, we assigned a free labeling to the Petri
pet (the reachability problem in Petri net is independent of its labeling). The
resulting STOCS machine accepted the same language as that accepted by the
Petri net. In the proof of Theorem 5.2, the number of instances of each

handshake is exactly one if the STOCS machine is free labeied. The Petri net

85

Petri-net

ve

Figure 5.5: Petri Net for 2-out-of-3 problem

constructed out of the STOCS machine has the same language. From these

two Theorems, it can be concluded that the class of languages accepted by

FLOPNX and FLSTOCS machines is identical. Q.E.D.

86

Procedure STOCS_ to_Petri();
begin

(* Construct P *)
P:= U})i-spi
-
(* Construct T *)
T := {ag | whereC C| Jb;, such that | SNé; | =1 i}

(* Construct I{ag) *) :
Iag)={p;eP| Fp;: (p;.a.p)€S}

(* Construct Ofag) *)
Olas)={p;eP| Ap;: (pr.a.p;)eS}

(* Marking *)
“[(1))=(-'x(p) if peP‘l

end
Figure 5.6: A Procedure to Convert a STOCS machine to a PN

2.1. Decomposition of a Petri net: Consistent Unit Assignment

As mentioned earlier, a Petri net has multiple equivalent STOCS
machines depending on different unit assignments. In our proof of Theorem
5.1. we used the trivial consistent unit assignment - assignment of each place
to a different process. This assighment may result in a large number of units
and the resulting STOCS may not be easy to understand. For example, Figure
5.3 shows a Petri net and its equivalent STOCS machine. The alternative

*

machine shown in Figure 5.7 is more difficult to understand and has more *-

places than the machine in Figure 5.3.

Since each unit represents a completely independent entity, a reasonable
measure of complexity of a STOCS machine is the number of units it contains.

With this motivation, it is useful to convert a Petri net into a STOCS machine

87

Figure 5.7: An alternate STOCS machine for Petri net in Figure 5.3
such that the number of units is minimized. We first show that the problem of
finasing a consistent unit assignment such that the number of units in the
resulting STOCS machine is minimum is NI>-complete |Garey 79]. More for-

mally,

Theorem 5.3: The following problem is NP-complete.
Instance: An ordinary unmarked Petri net N = (P,T,],0) and a positive

number K <= |P]|.

Question: ls Petri net N, K-decomposable, i.e. is there a function
[:P—{1.2...K } such that

Wt (pr.p) CHOV(pypa) CO(L)=> f(p)FE S (Pa)-

Proof:

(a) It is in NP.

This is immediate as there is a succinct certificate of K-decomposability - the

consistent unit assignment function. In other words, a Turing machine can

non-deterministically guess the unit assignment function and proceed to verify

88

that it i1s consisteni
(b) Reduction from verlezr coloring to K-decomposability.

Let there be a graph G=(V,E). We construct a Petri net N from it as follows:

N = (P, T.1.0) where

I(t) = {(v1,22) | t=(1r.v0)}

Oty =9

Assume that this Petri net is K-decomposable. This implies that there exists a
function f:V->{1,2,.K} such that

flr)=f(ra)=> R (v, .va)el(t).

This condition is identical for K-coloring of the original graph. Therefore. it
follows that N is K-decomposable iff G is k-colorable. Q.E.D.

The above proof shows how K-colorability can be transformed into k-
decomposability. Figure 5.8(a) illustrates this.

We next show that K-decomposability of a Petri net can be reduced in
linear time to K-colorability of a graph. Therefore, we can use any algorithm
that returns good sub-optimal coloring or optimal coloring with good probabil-
ity to solve K-decomposability problem.

Theorem 5.4: K-decomposability of a Petri net can be reduced to K-
colorability of a graph.

Proof: We construct a graph G = (V,E) as follows.

89

{(a)

/

Petri-net

Vv

Figure 5.8 K-decomposability <=> K-colorability

V = P, the set of places

E = {(v;.00) 13t {vprg} CHUWA{v),0}CO(1)}

Clearly, if there exists a K-color assignment to the graph, the original Petri

net is K-decomposable.

Figure 5.8(b) shows a conversion from K-decomposability of a Petri net to

K-colorability of a graph. Note the conversion of an ordinary Petri net such
that each transition has exactly one input and one ouput. Such a Petri net is

equivalent to a finite state machine. When such a Petri net is converted to a

90

STOCS machine, a single unit is enough as consistency conditions are always
satisfied. The reduction is pleasant as it gives us back the classical finite state
machine. Another observation is that anv unit without *-places is just an S-
invariant of the original Petri net [Murata 84]. Thus, a Petri net can always be

decomposed into S-invariants and units with *-places.

3. Comparison of Ease in Modeling

Having compared the inherent power of both models, we now compare
the convenience of modeling in them. Petri nets have been used to model a
large variety of systems such as computer hardware, computer software,
PERT, chemical equations and communication protocols. Our aim is to
analyze concurrent systems and we will limit our discussion accordingly. We
further constrain our modeling to systems that use synchronous messages. We
believe that concurrent systems with synchronous messages are easier to model
using STOCS machines than Petri nets for the following reasons:

1) The STOCS model is closer to programming languages.

Once a concurrent system has been specified in a concurrent model. it
needs to be implemented in some programming language by filling the details
missing in the high-level specification. It is easier to derive an implementation
from a model that is closer to a programming language. The STOCS model is
closer to most concurrent programming languages than a Petri net is. Most
concurrent programming languages use synchronous communication which is
closer to the semantics of a handshake in STOCS. Specifically, rendezvous of

Ada and 1/O statement of CSP can be easily represented in the STOCS

91

model. The STOCS machine also has the notion of process(unit) which is miss-
ing in Petri nets. As a result of this closeness to programming languages, we
have incorporated the STOCS formalism in C to make it suitable for con-
current programming. This aspect of the STOCS model is discussed further in
Chapter 8.

2) Petri nets require an explicit specification of interaction between

multiple processes.

The disadvantage of Petri net's style of modeling is that a net can become
very complicated because places belonging to different processes get inter-
mixed. The implicit interaction between processes based on the name of
interaction promotes modularity in the specification of the system. For exam-
ple, consider the 2-out-of-3 problem. Since an explicit interaction is required,
we need to have explicit arrows between transitions and places belonging to
the memory scheduler and processes requesting memory blocks. The
equivalent STOCS machine as shown in Figure 5.5 is much simpler.

3) Partial specification is difficult in Petri nets.

This is the major disadvantage of Petri nets compared to STOCS
machines. Since there is no notion of communication between multiple Petri
nets, the behavior of a system is generally specified by one big Petri net. This
makes specification of the system difficult to understand and write. As another
consequence, the system has to be specified completely before it can be
analyzed. To appreciate this, consider the example of job scheduling discussed
in Section 4.1 in Chapter 3. Figure 3.11 shows a Petri net for the shop and

Figure 3.12 shows a STOCS machine for it. In the STOCS model, order,

92

operators and macnines are specified separately. As a result, it is easier to add
another order. machine or operator to the STOCS machine than to the Petri

net.

Sometimes, the communication between various Petri nets is represented
using tokens. Each Petri net is considered to have input and output places.
Two processes are composed by overlapping the output of one with the input
of the other. This way of communication is more suitable for asynchronous
messages and cannot represent synchronous events.

4) STOCS machines have a closer correspondence with state

machines.

Each unit in a STOCS machine can be thought of as a generalized finite
state machine. Since the notion of state arises in manyv contexts, it is easier to
write specifications in the STOCS model than in Petri nets. Each token in a
unit roughly corresponds to the current state of a finite state machine it is
simulating. Consider again the example of shop modeling. Each machine and
operator has a finite number of states and is easily modeled as a finite state

machine.
5) Languages accepted by STOCS have an algebraic characteriza-
tion

As shown in Chapter 4, the language accepted by a STOCS machine can
be characterized by a concurrent regular expression. These expressions are

built of algebraic operations on strings and form a suitable basis for specifyving

many concurrent systems. Chapter 4 provides examples of concurrent systems

93

which are easier to model algebraically. The duality between STOCS
machines and concurrent regular expressions is therefore useful for choosing

the appropriate specification for any domain.

To illustrate our arguments, consider the producer consumer problem.
The solution to the problem expressed in the STOCS model and Petri nets js

shown in Figure 5.6. Note the following advantages of STOCS model over

Petri nets.
U, U, U3
s Sa 33 84 85 sﬁ
produce put_item gel_item
\/\},"—\
pul_item get_item consume
Producer Bufler Consumer
U, U, r's
produce put_item get_stem
OO T AEE A A
«v—!) @ .) f—
put_item N get_item S~ consume

L i
{ j Produrf

Get_Item
| .
i
1&((/o
\\T%«T J- _LVL

Item onsume " Pal_Item Tonsume

Figure 5.6: A Petri net and a STOCS machine for producer consumer problem

>~

1) The Petri net representation consists of one single Petri net for the pro-

ducer, the consumer and the buffer.

94

2) The unbounded version is exactly analogous to the bounded version for
STOCS(* tokens instead of n). This is not true for the Petri net.

3) It is easier to specify each component of the system separately. For exam-
ple, :the behavior of the producer process is simply modeled as (produce

put_bufler)*.

4. Comparison of Languages

A Petri Net can be defined as a four tuple (P,T,],0) where P stands for
the set of places. T stands for the set of transitions, I stands for the set of
input arcs and O for the output arcs. In addition, we also define a labeling
function 0:T—X where T is the alphabet of the Petri Net. We also define an
initial marking pg which assigns a certain number of “tokens™ to places. The
function & is a transformation function which associates a marking and a
sequence of transition firings to a new marking. Depending on the acceptance
criteria four different types of languages for Petri Nets have been defined
[Peterson 81]. These languages are called L.G,T and P-type languages. The
acceptance criteria for a L-type language is that the Petri Net should start
from the initial configuration and reach one of the predefined final
configurations. In G-type languages the final configuration should cover at
least one final configuration. A T-type language is accepted if the Petri Net
reaches a terminal configuration i.e., a configuration where all transitions are
disabled. A P-type language is a L-type language where all reachable
configurations are final configurations i.e, s§=0(3) is accepted if &(u,.8) is

defined.

95

In addition to these classes of Petri Net languages, we define a new class
of languages called F-type Languages. The definition of F-type languages is as
follows. A Language L is a F-type Petri net language if there exists a Petri net
structure (P, T,1.O). a free labeling of the transitions ¢:T—X, an initial mark-
ing prg and a set of final states F such that L = {o(s)eT’ | seT" and the mark-
ing p=26(yty.s) has no tokens in any place €(P—F)}. In this dissertation, a Petri

net language would always mean an F-type language.

a b
P ,//—’s\"\ - >\
w0k J 9
=

sl \1 s2 83

a Ly Py
(J\ (¥) (\;
v ¥ y—
unit 2 / K b TN c /RN
AT AU
\ N \
S’ \// N 4
s4 §5 ﬁ

Figure 5.1: A STOCS machine accepting a"b"c"
Theorem 5.5: All concurrent regular languages are also Petri net languages.
Proof: From the construction of Theorem 5.2. For any STOCS, the Petri net
constructed has the same language as the STOCS machine.
The above result also tell us that there exist context-free languages which
are not Petri net languages and therefore not concurrent regular. An example
R

of such a language is {uw™} which can not be accepted by a Petri net [Peter-

96

son 81]. Figure 5.7 demonstrates that there are concurrent languages that are
not context-free. The language accepted by the STOCS machine in Figure 5.7
is L= {a"b"¢" | n >0} which is not context free. Since the machine is deter-
ministic. we have shown that there are DSTOCS languages that are not con-

text free either.

CS: Context-sensitive CR: Concurrent regular
CF: Context-free U : Unit languages
PN: Petri net languages R: Regular

Figure 5.8: Relation of Concurrent Regular Languages with other classes

Since concurrent regular languages are included in Petri net languages,
which are properly included in context sensitive languages, we conclude that
concurrent regular languages are properly included in context sensitive

languages. Figure 5.8 shows the relationship of various classes of languages by

97

- T

a Venn diagram.

Theorem 5.4 also provides us a method of characterizing the language of
ordinary Petri nets by means of algebraic expressions. Concurrent regular
expréssions defined so far characterize the class of languages of STOCS
machines. However, the class of language of STOCS machines is a proper sub-
set of that accepted by Petri nets. Since any free labeled ordinary Petri net is

characterized by a concurrent regular expression, an ordinary Petri net can be

described by extending CRE's with the substitution operator.

A substitution operator denoted by <z:y> replaces every occurrence of
r by y. For example. ab® <c:a> is the same as ab*a. An extended con-

current regular expression (ECRE) over ¥ is defined as follows.

Definition: A unit expression is an ECRE. If A and B are ECRE’s then so are
A+B.A B A||B,A[|B,andA <X:Y>.

Theorem 5.8: The language accepted by ordinary Petri nets without ¢ is the
same as that characterized by an ECRE under our acceptance condition.
Proof:

1) Petri Net => ECRE

Convert the Petri net P to a free labeled Petri net P' by assigning a substitu-
tion <X:Y>. By Theorem 3.2, the language of P’ is the same as that of a
STOCS machine S. By Theorem 4.5, the language of a STOCS machine is the

same as that of a CRE C. Then

L(P) = L(P')<Y:X> = L(CRE)<X:Y> = L{CRE<X:Y>)

98

2) ECRE => Petri Net

Every unit expression can be converted to a Petri net by Theorem 3.2 and 4.5.
Petri nets are closed under choice, concatenation, interleaving, substitution

and synchronous composition, and therefore the result. Q.E.D.

5. Conclusions

In this chapter, we have shown that the reachability problem is equivalent
for STOCS machines and Petri nets. This provides us the confidence in model-
ing capabilities of STOCS machines, because any system that can be modeled
as configurations of a Petri net can equivalently be modeled by a STOCS
machine. We have also shown that STOCS machines offer many advantages
over Petri nets for modeling concurrent systems based on synchronous com-

munication.

99

CHAPTER 6

STOCS Machines With Uncontrollable Event

1. Introduction

In this chapter, we provide an extensional theory of concurrent processes
that may have uncontrollable events. These events are not observable by the
environment and their execution depends entirely on the process. To provide
the extensional theory of such processes, we retain our previous notion of
equivalence. l.e. two concurrent systems are equivalent if and only if the
observer cannot distinguish between them by supplying an input string and
observing whether theyv accept it. However, we now assume, that for a given
string. a svstem may sometimes accept it and sometimes reject it. This
assumption is different from that made in classical formal languge theory.
which requires a machine to either alwayvs accept a string or always reject it.
In concurrent systems, and more generally in nature. there exists an uncer-
tainty in execution which implies that any given string may sometimes be
accepted and sometimes rejected. Example of such scenarios are as follows:

(1) Timeout: A process may change its internal state on timeout and events
which were valid earlier may not be so any more. For example, consider an
elevator in a building with three floors. If a passanger enters the elevator on
the second floor, he can press the button for either floor 1, or floor 3. However.
if he does not do so within some time, the elevator does a timeout and starts

going down. In this state it will satisly request only for floor 1. The behavior of

100

the elevator is shown in Figure 6.1{a). Consider an alternative design of the
elevator which does not timeout. This elevator E' is shown in Figure 6.1(}h}.
By the semantics of classical finite state machine theory, the finite state
machines corresponding to two designs of of the elevators are equivalent
because they accept the same language. According to our semantics. these
machines will be treated different because the first one may reject a request for

the third floor. whereas the second one cannot.

E E

floor] /?'/' ‘: y\\j
, o
—~ L7
ey .
" ™_ floor3
\ \
: ~a f :

D

; . x.(/?_\y oor3 T /N
: \\\5" ~

Figure 6.1: Two Different Elevators

(2) Random: A process may use randomness and change its state on its own.
For example. consider a double-or-nothing game. Assume that you toss a fair
coin. and depending on its result, you win or lose. Consider a second game in
which you know how to toss the coin to get the desired side. In this game you
have the choice of winning or losing. Both situations are shown in the Figure
6.2. The classical finite state machine semantics do not differentiate between
the two cases as the language acceptable in either case, is {toes.head,
toss.tail). With our semantics, the first machine A/, has randomness and

may accept or reject both head and tail depending on which 7 the machine

101

takes. In contrast, M, does not reject any of them (i.e., the coin’s outcome is

dictated by its environment).

M1 M2
M
7 //v’
~—. toss — head @j\‘
\/ R '/ 8) toss N
~— "’\\ ()
BN .
T ~% 7 tail —
\\v}\\ (\/)
tail \ =
()

Figure 6.2: Controllable and Uncontrollable Toss

(3) Internal Faults: The machine may make internal state change due to a
fault. A fault could be any unanticipated event for a process - such as an error
in disk writing. opening a file. and termination of the communicating process.

The modeling of such situations requires the use of uncontrollable events.

(4) Hidden Events: For abstraction purposes, we may chose to call certain
events in a process, internal. These events can be executed by the machine on
its own will. Consider for example, a passanger who chooses to take either a
train or a bus based on some complex reasoning. For the analysis this reason-
ing may be irrelevant and therefore we will represent the external behavior as
shown in the Figure 6.3.

With the motivation provided above, we allow a machine to take some
unobservable actions. These actions, however, must terminate, and we con-
sider any machine that can engage in unobservable actions in an unbounded

manner an invalid machine. A machine, when offered a choice of events can

102

wait for train
JT‘/\»———,?O

/ \ .
O O wast for bus

l//—\// ~
~ Rt
d \‘_/) wail for bus

Figure 6.3: Use of 7 Symbols for Abstraction
reject the experiment if and only if it cannot participate in any event or take
any internal action.

This chapter is organized as follows. Section 2 compares our framework
for hidden events with that proposed by Milner and Hoare[Milner &0, Hoare
83]. Section 3 describes the semantics of uncontrollable.STOCS machines.
Section 4 describes the semantics of uncontrollable concurrent regular
processes. Section 5 proves that the equivalence of the STOCS model and
CRE holds even when the uncontrollable actions are incorporated in the sys-

tem.

2. Related Work

Uncontrollable actions have also been modeled and analyzed by CCS and

CS. Our work differs from them in following:

Automala Theoretic Equivalence

103

CCS and CSP are algebraic systems and they do not have any equivalent
notions in automata theory. Whereas our theory has useful operators such as
Kleene closure required to define finite state processes, such operators are miss-
ing in both CCS and CSP.

Prefix Properly

Both CCS and CSP satisfy the prefix property, that is, if a sequence of
event is acceptable then all its prefixes are also acceptable to the system. Our
framework is more general as it can model situations in which the prefix pro-
perty may not hold. If we do want the prefix property, then we can easily

simulate it by considering all places final.
Separalion of Specification and Operational Non-determinism

Classical non-deterministic finite state machines provide non-determinism
during the specification of the svstem. This leads to a compact description of
the system. During the operation, there is only oracular non-determinism as it
is assumed that the machines make a correct guess at each choice presented.
Such non-determinism also arises due to ¢ arcs in finite state machines, which

has the semantics that the finite state machine takes that arc if it can lead to

acceptance of the string.

On the other hand, CCS and CSP provide demonic non-determinism at
the operation level,.which we call uncontrollability. The user cannot specify
that a process must take the choice which is the best for that string. If there
are multiple choices that are compatible with the environment the process can

make any of the choices. 7 represents an internal action and the process can

104

take this action whenever it desires so. Even though this approach can model
situations not possible in classical finite state machines (as shown in Section
6.1). it loses the compactness of the non-deterministic finite state machines. In
our theory. we have both kinds of non-determinism. 7 provides operational
non-determinism and we call it uncontrollability. ¢ and multiple symbols on a

single state provide non-determinism at the specification level.

3. Uncontrollable STOCS Machines (STOCS with 7)

To describe our model extended with hidden operations, we first describe
the valid syntactical structures expressed in our formalism and then describe

their denotational semantics.

3.1. Syntax

A USTOCS (Uncontrollable STOCS) machine M is a set of units
(U7,.U5..0,). Each unit is a five tuple i.e. U, = (P,;.C};,X, .6, ,F;) where:
e P, is a finite set of places

° C.

; 1s an initial con figuration which is a function from the set of places to

nonncgative integers N and a special symbol "*". i.e.,C;:P;—(NU{ *}).
e X, isa finite set of handshake labels
o 6,CPXE;U{¢r)XP;,
o F,isasetof final places, F;CP;.

The above definition is the same as that of a STOCS machine except that an
arc can be labeled by any of the events in the alphabet set or by an ¢ or a 7

symbol. We describe these symbols next.

105

¢: This symbol has the same semantics as in classical automata theory. It
provides non-determinism in the specification of a system. From an opera-
tional view, we say that a machine consults an oracle if it has multiple

choice.

7 This symbol stands for some internal action by a machine. The external
environment has no control over this action. This symbol can be used by
'a machine to make an internal choice. The internal action is treated like
an algorithm which must terminate. This symbol provides non-

determinism during the operation of the machine.

For simplicity, we chose to disallow the case when the machine does not
terminate on the given input by going through a loop of internal actions. Since
in real life, we would not like to have such machines we consider only those
machines syntactically valid which do not have a loop of internal actions. In
other words, we do not allow any unit that has a cycle consisting entirely of 7
svmbols. Figure 6.4 shows such a unit.

This redtriction is for clarity and can be easily removed by providing
semantics to the processes that can loop on internal actions. To add such
semantics, it would be necessary to add the notion of divergence set [Hoare &5}
which is the set of strings that can lead the machine into a nonterminating

computation.

With this additional constraint on the validity of a system, we can assume

that given a string a machine always terminates.

106

[}

Y
ﬁz\
O

Figure 6.4: A Syntactically Invalid Machine

3.2. Semantics

In our earlier discussion, we had assumed that STOCS machines did not
have 7 symbols. The semantics of such a machine was defined as a tuple of its
alphabet and its acceptance language. As we saw in our previous example,
these two sets may not characterize a USTOCS machine completely. The
semantics of a STOCS machine with ris defined as the triple (¥,mazL . minL)
where:

(1) £ (Symbol Set): It is the set of symbols for the machine. For example, the
set of symbols for the machine M1 is {floorl, floor3}.

(2) maxL (Optimistic Acceptance Set): It is the set of strings that can be
accepted by.the machine. This is the conventional trace defined for a non-

deterministic finite state machine. Thus a string s is acceptable if and only if

there exists a way of accepting the string s. At each node the machine chooses

107

T

any of the choices afforded to it. A ris identical to an ¢ for this set. For exam-
ple, the optimistic acceptance set for both mackines E and E’ is {floorl,

floor3}.

(3) minL (Pessimistic Acceptance Set): It is the set of strings which are always
accepted. We assume that the machine can take an internal action whenever it
desires so. Therefore, at each stage of decision, the machine can either make
an oracular guess or take an internal action. If there are multiple internal

actions (multiple outgoing 7 arcs), the machine may choose any of them.

For example, the minimum acceptance set for E is {floor1} while for E’ it

is {floor1, floor3}.

Example
The semantics function S for A, in Figure 6.1 is
S|IEl}= {(floor1, floor3),(floor1, floor3),(floor1)}
and for E', it is
S{|E']) = {(floor1, floor3),(floor1, floor3),(floor1, floor3)}
Similarly, the semantics functions for Af; and M, in Figure 6.2 are
S[IM,])= {(toss,head tail)(toss.head (foss.tail),()}
S{[M2]))= {(toss,head (tail),(toss.head loss.tail),(loss.head loss.tail)}

We next show that the minimum acceptance set is the same as the set of
strings that must be accepted by the machine if at each of the node machine

choses an internal action if possible.

Definition: The tau-acceptance set of a USTOCS machine is the set of strings

traced by tokens such that if a token reaches a place with one or more out-

108

going arcs labeled 7 then it can only take one of them.

Theorem 6.1: The minimum acceptance set of a USTOCS machine is the

same as the tau-acceptance set.

Proof By the definition of minimum acceptance set, minL C tau-acceptance
set. Let a string belong to tau-acceptance set. We will show that this string
cannot be rejected. At each point during the simulation of machine, it may
either make an oracular guess or or take a 7 action. Since on taking 7, the
string gets accepted. the machine always take a 7 action. Therefore, the string

also belongs to the min-acceptance set. @.E.D.
a
(a) (b)

O A
7 F\ r ,\J\\ .
/

eJ O

\ d
/N7 \ ;

A=
; ;

Figure 6.5: Equivalent Structures for minL

T

t

Theorem 6.1 provides us an easy way to calculate the minL for a
USTOCS machine. For all places with 7 as out-going edges, we delete non-tau
edges as they can never be taken for minL. The resulting USTOCS machinc

will have two types of places - ones with out-going arcs labeled as 7 and others

109

with out-going edges labeled with epsilon or labels from L. By Theorem 6.1,
the minL of both machines is identical. For examples, to evaluate the minL of
the machine in Figure 6.5(a), it is sufficient to evaluate the minL of the

machine in Figure 6.5(h).
4. Uncontrollable CRE (UCRE)

4.1. Syntax of Uncontrollable Concurrent Regular Expressions

We add an additional operator for the semantics of 7. This operator is
termed non-deferministic or by Hoare. We chose to call this operator uncon-

trollable choice and denote it by @.

<regular> :: <symbol> | <regular>* | <regular>.<regular> |
<regular> + <regular> | <regular> @& <regular>

<unit> : <regular> | <unit> || <unit> | <unit>°

< concurrent_regular> :: <unit> |

< concurrent_regular> [] <concurrent_regular>

4.2. Semantics of Concurrent Regular Expressions

If concurrent regular expressions ;;re to characterize USTOCS machines,
their semantics must also be specified as a triple (¥,marL,minL). The new
operator, uncontrollable choice, is identical to ordinary choice for the purposes
of maxL but different for minL. Consider the expressions (a+b) and (a @ b).
Both of them accept the language {a,b}. However it is possible that (a @ b)

not accept a or b, whereas a+b will always do so.

110

With the above intuition, we formally define the semantics of concurrent

regul=r expressions as follows:
Primitive Regular Expressions:

Sliel] = 0}

Sl = {0.0.03

Sllall = {(a)(a)a)} \Vael
Controllable Choice:

S{|A+B|] = {£4UTE.0,UO0z P UPg}
Uncontroliable Choice:

This operator is responsible for the differences between the maximum and

minimum language.

S|4 +B|] = {£4UTp.0(4)UO(B),P(A)NP(B)}
Concatenation:

S({4.B]] = {£4USp.04.0p.P4.Pp}
Kleene-Closure:

Sl = {404 P,"}
Interleaving:

SIAIIBI = {SAUS5,04ll05.PAllP5)
Alpha-Closure:

S[IA%]) = {£4.04°P4°}

Synchronous Composition:

111

S[A[B]] = {€4UZp.0410p.Ps[|Pp}

Example 1: Assume that we need to mode! the fact that the machine must
chose a but after that it may accept b as well as c.

S|la.{b+c)]] = {(a,b.c){ab,ac),(ab,ac)}

On the other hand, if the machine is such that after executing a, it may
accept b or ¢, but also reject either of them. Then,

Slla.(bxc)l] = {(a.b.c).(ab.ac),()}

Example 2: We now give the semantic functions of some non-trivial exam-
ples.

Stac+b)F(a.(c+b))]) = {{a,b,c).(ac,b.ab),(ac)}

S[l((ac+bd)F(bd))"||=1la.b,c.d)(ac.bd)(bd)"}

5. Equivalence of USTOCS Machines and UCRE'’s

We will show in this section that USTOCS machines and UCRE's are

equivalent in power.

5.1. Construction of a USTOCS machine from a UCRE

We will show that a regular expression with & can be converted to a
finite state machines with 7's. It is easy to extend this construction for a more

general case of UCRE.

We first show that the maximal and minimum acceptance set of a URE
are regular sets. The maximal acceptance set of a URE is obviously a regular
set. The following Lemma shows that it is also true for the minimum accep-

tance set.

112

Lemma 6.1: Minimum acceptance set of a URE is a regular set.

Proof: We use induction on the structure of URE. Except @&, all operators
treat the maximum acceptance set and the minimum acceptance set in an
identical manner. For «, we take the intersection of two sets. As regular sets

are closed under intersection, this would result in another regular set.

To convert a URE to a UFSM, we write it as REISRE2, where RE]
represents the maximal acceptance set and RE2 is the minimum acceptance
set. For each one of them a state machine can be constructed. The total com-
posite machine can be written as follows. Construct a new start state. Connect
7 ares to 1 and I'. The maximal set of this machine is the same as the max-
imum set of URE because the machine can always take transition to the first
finite state machine. Similarly, the minimum acceptance set is the same as
that of URE because no matter which 7 the machine takes. the string in

minimum set belong to both 1 and I'.

For example, consider the URE (aaab*¥ a *bbb)aba. The maximal set of
this URLE can be written as (aaab*+a *bbb)aba while the minimum set can be
written as (aaabbb)aba. Therefore the UFSM corresponding to the URE is as

shown in the Figure 6.6.

The above construction can lead to a large UFSM. In the above construc-
tion of machine for the minimum acceptance set, we may have to take the
intersection of two finite state machines to simulate & operator. This may
result in a UFM that are considerably bigger than the given URE. We now

provide a construction that keeps the size of UFSM upto a constant factor in

113

URE = (aaab*3a*bbb)aba.

size of URE.

Theorem 6.2: There exists a linear algorithm to convert a URE into a

UFSM.

Proof: For each primitive regular expression such as a and ¢, we construct a
FSM as shown in Figure 6.7. The controllable choice operator is implemented
by creating a new initial state and adding ¢ arcs from the new initial state to

initial states of operand machines.

O~O«—O+ﬁ'/ \

/\b
A\

O—O—0-Q

e

114

\

©)

@4*O+—OtO<—OPOH—O<~—O4—O*Q‘/

~ Figure 6.6: URE => UFSM

|-

[

o

o

o

>

-]

The uncontrollable choice operator is

. 40 ©
A+B ©<_.____
N0 @
L .O ©

- C
c < B d
S ’]O ©

AB

>
)
e,

]

~

O |
o
)

A* C)s @}

Figure 6.7: URL => UFSM. A better transformation
implemented by creating a new initial state and adding 7 arcs from the new
initial state to initial states of operand machines. Concatenation of A and B is
implemented by means of ¢ arcs from the final states of I2 to the initial state
of 11. Kleene-closure is implemented by adding ¢ arcs from all final states to
the initial state and making the initial state final. Q.E.D. Figure 6.8 shows

the application of this algorithm.

115

Figure 6.8: Result of more direct transformation

5.2. Construction of UCRE'’s from USTOCS Machines

We will show that a URE can be constructed from a UFSM. It is easy to
extend the construction to USTOCS machines. We first show that a UFSM
can be written as a conjunction of two finite state machines, one for maximal
acceptance set and one for minimum acceptance set. Since a FSM can be con-

verted to a RE, the URE equivalent to a UFSM is just the @ of RE's for max-

imum and minimum RE's.

Theorem 6.3: Minimum acceptance set of a UFSM is a regular set.

116

Proof: We first use Theorem 6.1 to use tau-acceptance set of the UFSM
instead of the minimum acceptance set. We show the result by reducing the
number of nodes with rarcs. Choose any node with n out-going 7 arcs. We
replace this UFSM by the intersection of n machines in which this node will
have only one out-going arc. Since such a node can be combined with its des-

tination node. the total number of 7 nodes is reduced by one. @Q.E.D.

An application of Theorem 6.3 is shown in Figure 6.9.

O. O :

7 \;(\"‘\T T\
~
oXe) QO ;
\\-\‘ \ — \ N ‘

o =

O

c

o

©) O

| ! .

— e N =
©

Figure 6.9: Construction of regular set for minL

6. Conclusions

This chapter shows how hidden actions can easily be incorporated in our
theory of concurrent processes. We provide a unified treatment of demonic
and oracular non-determinismn. We believe that our approach leads to compact

specification via ¢ and more general semantics via 7. We have shown in this

117

i —e—— (a+b+c+d)Pr

Figure 6.10: UFSM => URE
chapter that the STOCS machines with uncontrollable events are equivalent

to UCRE with non-deterministic or (&)

118

CHAPTER 7

Analysis of STOCS Machines

1. Introduction

Research efforts in reasoning about programs can be divided into two
groups - manual a'nd automatic. Most researchers in distributed algorithms
use manual reasoning based on the behavior of the program. Many proof sys-
tems have been developed for reasoning about safety and liveness properties
[Apt 80, Hoare 85, Milner 80, Misra 81, Lamport 84]. Manual analysis is error
prone and cumbersome; therefore, we will restrict our discussion to automatic

analysis of distributed programs.

Automatic analysis of a concurrent system consists of computer explora-
tion of all its possible behaviors. Many concurrent systems are based on finite
state machines, making them particularly amenable to computer analysis.
This approach has been used by many researchers, especially for the
verification of communication protocols [Gerhart 80, Aggarwal 84, Blumer 86].
There are two main hurdles to this approach - the number of processes mav
not be known initially, and the number of states may be too large for explora-
tion. For an illustration of difficulties involved in this approach consider the
mutual exclusion algorithm in a ring network [Dijkstra 85, Clarke 86]. If we
know the number of processes initially (say 5), then we could construct the
global state graph and check for any property in the graph. However, this

approach becomes infeasible if the number of processes is not known initially

119

or is large (say 100).

There have been many efforts to contain the state explosion problem.
Many researchers [Dong 83, Kurshan 85] have studied this problem in the con-
text of automatic protocol verification, where this problem is dealt with by col-
lapsing multiple states into a single state while preserving properties that are
important for verification. These properties, however, are limited to logical
properties such as liveness and safety, whereas we also include functional pro-
perties. Also, their eflort cannot be used for reasoning in networks with an
unknown number of identical processes. Clarke et. al. [Clarke 86] propose
inductive techniques to prove properties of networks with identical finite state
processes. Their approach consists of establishing a correspondence relation-
ship between the global graph of n processes and the global graph of n+1
processes. They show that if the correspondence can be established, then any
formula expressed in Indexed Computation Tree Logic (ICTL) ¢ which holds in
the initial state of a network with a small number of processes will hold for the
network with a large number of processes. However, the step of establishing
the correspondence is manual and could be_ difficult enough to defeat the origi-
nal purpose of avoiding manual analysis. Our aim in this research is to minim-

ize human involvement during the analysis.

In this chapter, we present algorithmic techniques based on reachability
for the analysis of distributed systems. Since reachability algorithms face state

space explosion, we have used two methods to cut down the state space:

4 a proper subset of branch time temporal logic

120

exploitation of modularity and exploitation of symmetry. Exploitation of
modularity deals with techniques which analyze a system in a modular
manner. Exploitation of symmetry deals with symbolic and induction tech-

niques which avoid the global state space exploration.

This chapter is organized as follows. Section 2 discusses exploitation of
modularity in analyzing distributed systems. Section 3 discusses exploitation of
symmetry for analysis of systems expressed in the STOCS model. Section 4

makes concluding observations.

2. Exploitation of Modularity

We exploit modularity by means of the projection analysis method. This
method studies appropriate parts of the system to make assertions about the
global behavior. Projection techniques can be useful for analyzing the safety
properties of concurrent systems. They cut down the global state space by
exploring only the relevant parts of the specification. It is for the user to

decide which parts of the specifications are relevant.

Exploitation of modularity is easier in the STOCS model than in Petri
nets which are often analyzed for the reachable configurations. The ease of
analysis comes from the following reasons. First, the easier specification of par-
tial system in the STOCS model leads to techniques for analysis of partial sys-
tems and their use for assertions about the global behavior. Second, the
STOCS model has extra information about which place belongs to which pro-
cess (unit assignment) and therefore it can exploit the notion of a process

which is missing in Petri nets. Third, all the unboundedness of the STOCS

121

model is explicit and confined to *-states which makes the analysis simpler.

Safety concerns are generally phrased as “the system must never reach
the bad state”. Example of bad states are: "two processes are in the critical
region”, "there is no token in the token-ring” and "there are more men than
women in the ballroom”. More formally, a safety property of a STOCS
machine M is a logical statement of the form: Configuration C does not belong
to the set of all reachable configurations. Alternatively it could be based on
the sequence of computation and may assert that: the string of computation S
does not belong to the language L of the machine. A system is considered safe
if it satisfies all its safety properties. Figure 7.1 shows that for a safety pro-
perty it may be sufficient to analyze only the relevant units. This reduces not
only the number of reachable states, but also the complexity of analysis if
units do not have a *-place. These units corresponds to S-invariants of the

Petri net.

(S;z'nvariant)

A Petri Net A STOCS Machine
Figure 7.1: Modular Analysis of STOCS Machines

122

2.1. Reachable Configurations

We can do a reachability analysis for the STOCS model with the advan-
tage of exploring just a suitable projection of the system. The analysis of
reachable configurations of a subset of a system is based on the observation
that if a process cannot reach a configuration assuming the absence of some
units then it cannot reach that configuration in their presence. Before we
state our theorem, we need the definition of projection. The projection of a
configuration over a set S is defined as the configuration of tokens in states
belonging to S. Let R(M,C) represent the set of all configurations of a STOCS
machine M reachable from the initial configuration C.

Theorem 7.1: Let M, and Af, be two STOCS machines. Let C, and C, be
initial configurations of both STOCS machines respectively. Then
Projas(R(M,[|M,,(C,Cs)) C R(M,.C))

Proof: From definitions of projection, execution and composition. Q.E.D.

This theorem, although simple, has powerful applications. Using the theorem,
it suffices to prove that a certain configuration is not reachable in a partial
system to prove that it is not reachable in the total system. We next show that
the reachability question may be considerably simpler to answer for a partial
svstem. Theorem 7.2 gives a simple algorithm using max-flow techniques to
answer any reachability question on a STOCS machine consisting of a single
unit.

Theorem 7.2: Let a STOCS machine consist of a single unit with n states.
‘There exists an algorithm which given any initial and final configuration

answers the reachability question in O(n3) time (independent of the

123

Places that lose tokens Places that gain tokens
Pi P

Ck,/ C'l
S A D
/

\\

Pseudo-sour \\ Pseudo-sink
— "

€= Number of tokens lost by ith place
¢/;= Number of tokens gained by ith place

d,-'j= o< if a path exists otherwise 0

Figure 7.2: Construction of the Max-flow Graph

configurations themselves).

Proof

From Lemma 4.2 any unit with multiple *-places can be converted to a
unit U with a single *-place by merging all the *-places. We construct a max-
flow graph with n+2 nodes(Figure 7.2). We have one node for each place in
the STOCS machine. We divide up the places into two sets - places which gain
tokens (G) and places which lose tokens (L). If the overall final configuration
has more tokens than the initial configuration, we add the *-place to L, other-
wise we add the *-place to G. We connect each of the places in L to a pseudo
source with an arc of capacity equal to the number of tokens they lose. Simi-
larly, we connect each of the places in G to a pseudo sink with an arc of capa-

city equal to the number of tokens they gain.

We also connect two nodes with an arc of infinite capacity if there is a
path between the corresponding places in the STOCS machine. We next show
that the final configuration is reachable if and only if the maxflow in the graph

is equal to the maximum of the number of tokens in the initial and the final

124

configuration.

If there exists a maxflow with the desired value then all the edges with
the finite capacity must get saturated. This implies that there exists a way
such ‘that (1) Places connected to the source lose desired number of tokens (2)
Places connected to the sink gain desired number of tokens (3) The movement
of tokens respect the reachability in the graph. These three facts together

mmply that the final configuration is reachable.

To see the converse assume that the final configuration is reachable.
Reachability must respect the reachability conditions in the graph and there-
fore the change in configuration can be simulated in the graph. This will

make the graph saturated implying the desired condition. Q.E.D.

For example, consider the buffer process with size n in the producer con-
sumer problem. The number of tokens in the place p; represents the number
of empty buffers and the number of tokens in the place p, represents the
number of filled buffers. Since the number of tokens in a *-place free unit is

constant, we conclude that the number of filled buffers can never exceed n.

The previous result gives us an efficient algorithm to answer any reacha-
bility question for a single unit. These units are even allowed to have *-places.
The simplicity in analysis comes from the fact that the tokens within a single
unit are not constrained and can move freely. The problem is more difficult
with the presence of additional units. In this section we show that it is NP-
complete to analyze the a STOCS machine with multiple units for reachabil-

ity. We impose these additional restrictions to the structure of STOCS

125

“_»

machine.

(1) There are no *-place.

(2) Each of the unit is acyclic.

Thesrem 7.3: [Kanellakis 85] The following problem is NP-complete.
Instance: A STOCS machine S=(U1,U2), such that no unit has *-place.
Question: Is configuration C reachable?

Proof: This proof is adapted form [Kanellakis 85].

It is in NP.

This is proved by providing the steps which lead to the configuration. Since

the machine is acyclic, the number of steps are polynomial in its size.
Reduction from $-SAT.

Instance: A set U of variables, collection C of clauses over U.
Question: Is there a satis{fving truth assignment?

For each variable, we make a process as shown in the Figure 7.3 and for the
collection of clauses we make another unit as shown in Figure 7.3. The initial
configuration is shown in the Figure. The boolean formula is satisfiable if and
only if the STOCS machine can reach a configuration in which all tokens are
in the last state of their units. Each component in the unit U,, decides the

value of a variable. Q.E.D.

The above result indicates that in general one may have to take the cross

product of all the structures traced by tokens.

126

(z1VZ2VZ3)A(rl V22V Z3)A(Z1 V2V 23)
(/" I7

va
<

O - -
1 [\ 7 —
P

C

Figure 7.3: Reduction of 3-SAT to reachability in acyclic bounded STOCS machine

2.2. Language of the STOCS Machine

So far, we have been interested in reachable configurations. Other
interesting questions can be posed in terms of the language of a given machine.
The analysis of the language of a STOCS machine is based on a crucial obser-
vation - if a process caunot make a transition assuming the absence of some
units then it cannot do so in their presence. This observation is formalized in
Theorem 7.4 which states that the language of composition of two STOCS

machines restricted to the alphabet of both STOCS machines is a subset of the

127

intersection of their languages. More formally,

Theorem 7.4: Let M, and M, be two STOCS machines with H, and H., as
their handshake sets. Let H=H NH,. Then
L(AMIMo)/H C LMy HOL(M,)/H

Proof: From the definitions of composition, execution and restriction.Q.E.D.

For example, consider the producer consumer problem with an infinite
buffer (Figure 3.2). The language of the buffer process is the set of strings con-
sisting of symbols pul_tfemn and gel_ilem such that the number of put_item is
greater than or equal to the number of get_item. Once we know the language
of the buffer, we conclude by Theorem 7.4 that no matter what other com-
ponents exist in the system, this specification must hold. For the mutual exclu-
sion probiem (Figure 3.1), the language of the synchronizer process is
<regrel >*. With this we are guaranteed that no matter what other processes
do, there cannot be two consecutive regs. Similarly, the chocolate vending
machine owner in the vending machine example can satisfy himself that no
customer can cheat him by analyzing the language of the vending machine.
The language of the vending machine consists of all those strings such that the
number of coins is greater than or equal to the number of chocolates delivered.

Note that it would be harder to prove such things for Petri nets.

3. Exploitation of Symmetry

Exploitation of symmetry is facilitated by the structure of the STOCS
model because tokens make it easier to model systems with many identical

processes. As most distributed systems have one or more identical sets of

128

processes, these techniques have wide applicability, especially to the networks
with the star, broadcast or the ring topology (see Figure 7.4).

client

o /P ™

o L)
) O JDOO!)(MLCL e

O
star-topology broadcast-topology ring-topology

Figure 7.4: Virtual Topology for Communication

A slar topology consists of a server (master) process and a set of identical
client (slave) processes. Client processes interact only with the server process
forming a star topology. This topology is common in centralized systems and
various network servers such as name server and printer server. A broadcast
lopology consists of a set of identical processes connected to a broadcast
medium such as an ethernet. We assume that messages are always broadcast
and must be received by all the processes. An example of such a system is a
set of identical readers and writers connected to a ethernet. A ring lopology
consists of a set of identical processes communicating in a circular fashion.
Each process has two neighbors and all messages originating at the process
must go through one of the neighbors. This topology of processes is common
for local area networks with token ring such as the Cambridge Ring Network

[Needham 82].

All of the above networks show symmetry and it is desirable to have
methods to reduce the global state space by exploiting this symmetry. We pro-

pose symbolic and induction methods in this chapter (see Figure 7.5).

129

Communication Topologies

l

Star Broadcast Ring O{hen

Symbolic Reachability l
e.g. readers writers

Symbolic atrix Simple ln.duc‘lon
Reachability Equations Induction with
e.g. 2-out-of-8 e.g. £-out-of-m e.9. Dining Filters
blocks blocks Philosophers €.9. Mutual

Ezclusion

Figure 7.5: Analysis of Various Topologies

3.1. Star Topology

The symbolic analysis method expresses the global state in terms of sym-
bols instead of computing the actual global state. These symbols are then
manipulated to compute other reachable global states. A symbol could stand
for any unspecified component of the system, such as the number of processes.
With this method, one symbolic state represents multiple computed states.

thus reducing the state space substantially.

One of the advantages of the notion of token in STOCS is that it can
represent a process; therefore, multiple identical processes are represented by
multiple tokens in some state. If the number of processes is large or is unk-
nown initially, we may use a symbol (say n) in a state to represent the unk-
nown number of processes. Now we do the rest of the analysis in terms of
these symbols. We use symbolic analysis for networks with either a star or a
broadcast topology. A star topology is shown in Figure 7.4. A STOCS
representation of such a network would generally have two units - one for the
master process and one for multiple slaves. The multiplicity of slaves is

represented by presence of multiple tokens in some state. We will use two

130

methods to analyze STOCS with star topology - symbolic reachability and
matrix equations.

Symbolic Reachability

Symbolic reachability of a STOCS machine is done by constructing the
reachability graph of its configurations. A reachability graph is a directed
graph with each node representing a marking and a directed edge from one
marking (say C,) to another (say C,) if there is a handshake that takes the
STOCS machine from marking €, to C,. We allow coordinates of a marking

to be symbolic. As an example of symbolic analysis consider the 2-out-of-3

problem.
U",o U2
STOCS O
o] Tmemer T 48 85 mem b
(o o &L >0
n L4
‘:(7‘ /\ /’I/v \—/'\"Ef’/
“\ " re
\\%}

(n.0.0,0,3,0)--4\
¥

(n-1,1,0.0. 2, H+{n-1,0,1,0, 1-24(n-1.0,0,1,2,1)
|
(n-2.3,0,0. 1.2} 4(n-2, 1, 1,0, 04, (n-2, 1.0. 1, 1, 2)

¥ ~
(n-3.3,0,0,0,3) (n-2,0,1,1,0,3)
Deadlock !

Figure 7.6: Example of symbolic analysis of STOCS

The 2-out-of-3 problem is a good abstraction of many resource contention
problems. Assume that a memory scheduler has three memory blocks and that
any process requires two memory blocks to execute. A non-preemptive pro-
cedure for such a system with n processes is given in Figure 7.6. We place n

tokens in the state s, to signify n processes and three tokens in the state s to

131

N e .

signify availability of three memory blocks. To analyze the solution, we draw
a reachabili‘ty graph of its configurations. The initial configuration is
(n,0,0,0.3.0). With this configuration only a mem handshake can take place,
resulting in the configuration (n-1,1,0,0,2,1) which is explored next. This pro-
cedure is continued until all nodes in the graph have been explored. Following
it in our example, we find that a deadlock exists if the number of processes is

greater than or equal to 3 (see Figure 7.8).

With the brute force method of taking the cross product of all possible
states of all processes, there would be 4°° states for a system with 25 processes,
in contrast to 9 states that need to be explored if the symmetry is exploited.
The chief disadvantage of this method is that the reachability graph may not
be finite. w-notation, first introduced by [Karp 68], can be used to make the
graph finite but due to the loss of information it can only solve the coverabil-
ity problem[Peterson 81]. As this method is independent of the issues that
arise due to the symbolic nature of coordinates, we do not discuss this method
here and refer interested readers to [Peterson 81].

Matriz Equalions

Symbolic reachability can sometimes run into problems when the reacha-
bility graph is dependent on the value of symbols. Matrix equations, another
approach to analyzing STOCS, are as easy to analyze with symbols as without
them. We will use a variation of the example of a memory server to illustrate
the analysis with matrix equations. We will assume that the memory server
has m blocks (instead of 3) and that it uses a preemptive algorithm to grant

requests (see Figure 7.7). Our task is to check whether deadlock is possible in

132

such a system. Various steps in using matrix equations are as follows:

(1)

(2)

(3)

Uje? Ue
Vi
STOCS .
el MBI T 4 &5 mem a6
C ¥ "‘(’\ C\/\kO
n { m
”7\\\1/‘/.\‘ Arel

\'/84

Figure 7.7: Preemptive Memory Server

Let the initial configuration of STOCS for the problem be Af; which is
(n,0,0.0,m,0) for our example. We are interested in knowing if there is a
possibility of deadlock. It is easy to check that the only possible deadlock
states are: (n,0,0,0.0m) and (0.0,y,n-y,m,0). Thus the question of
deadlock reduces to the question of reachability of any of the above states

for some value of n. m and y.

We assign a variable X, for each possible occurrence of a handshake. This
variable represents the number of times that particular handshake must
occur to reach the final configuration. For example, X, represents the
number of times transition mem occurs from state s; and X5, the number
of times from state s,. Similarly, rel occurs X3 times from state sa. X',
times from state s3, and X5 times from state s,. Due to the synchronous
nature of execution, we conclude that the transition mem from state s,

must have occurred X'|+X; times and transition rel, X'3+X ,4+X'5 times.

Each of the above handshakes has an additive effect on the configuration.
For example, the handshake mem from state s, has the effect of removing

one token from state s, and adding one to s, (represented as (-

133

(4)

1,1,0,0,0,0)). If the fina] state is reachable then the cumulative effect of
all handshakes can be written as:
Mp=A{+X(~1,4+1,0,00,0)
+X,(0,—1,+1,0,0,0)
+X3(+1,—-1,0,0,0,0)
+X,(0,0,—-1,41,0,0)
+X'5(+1.0,0,—1,0,0)
+(X;+X5)(0.0,0,0,~1,+1)
+(X3+X,+X5)(0.0,0,0,+1,~1)
This can also be written as AM=AX where AM=M,~Af;, A is the

appropriate matrix calculated from above and X=(X;,X5,X3.X ,,X'5).

[-1 0 1 0 1]

1 -1 -1 0 0

For our example. A is as follows: A = g (l) g -11 _01
-1 -1 1 1 1

1 1 -1 -1 -

Note that A is independent of symbols used and therefore can be calcu-

lated just from the structure of the STOCS machine.

We next check whether the above system of equations has a non-negative
integral solution. For our example, we find that a solution is not possible
unless n=0. Now it is easy to show that if the system of equations does
not have a non-negative integral solution then the final configuration A/,
is not reachable. Hence, we deduce that the configurations (n,0,0,0,0.m)
or (0,0,y,n-y,m,0) are not reachable and therefore the system is free from

deadlock.

134

The chief disadvantage of this method is that even though a non-negative
integral solution to above equations may exist, the final configuration may not
be reachable. This problem is the same as the one faced duriiﬁg the analysis of

Petri nets using Matrix Equations[Murata 84)].

3.2. Broadcast Topology

This topology assumes a synchronous broadcast primitive which is an
extension of one-to-one synchronous i/o of CSP. The usefulness of such mul-
tiprocess synchronization constructs is discussed in [Ramesh 86]. A synchro-
nous broadcast requires that a message be sent only if all other processes are
ready to receive it. We will use the example of readers writers problem [Cour-
tois 71] to show that symbolic reachability can be useful for algorithms that
use broadcast topology.

The readers writers problem is as follows. Assume that a database is being
updated by certain processes called writers and consulted by some other
processes called readers. To avoid any concurrency conflict, these processes

can access the database only with the following constraints:

(1) At most one writer can access the database. (w-w conflict)

(2) A reader and a writer cannot access the database at the same time. (r-w
conflict)

(3) Multiple readers are allowed to access the database at the same time. (r-r
okay)

(4) To avoid the possibility of starvation of a writer, we add the constraint

-

that a reader cannot enter the critical region if a writer is waiting to

135

enter it.

For the analysis of broadcast topology, we will constrain a unit of a
STOCS machine to have at most one token. For the readers/writers problem
each ‘process forms a separate unit as it interacts with every other process. The
STOCS machine for a single reader and a single writer is shown in Figure 7.8.
7 events used in the Figure 7.8, are internal to the process and do not need any
inte‘raction with the external world. A minus sign before a symbol (e.g. -enter)
indicates that it is a broadcast and can take place only if other processes can
take the corresponding plus transition (+enter). We define the status of a net-
work of processes as a tuple with the number of processes that are in the ¢ th
statet as its i*" coordinate. Thus, (w,0,0) means that w processes are in state
1. and there are no processes in state 2 and 3. The status reachability of the
above problem is shown in Figure 7.8. The analysis shows that (1} the system
does not have any deadlock state (2) there is at most one writer in state 8, at
any time, and (3) readers and writers are never in state s, at the same time.
Note that the reachability graph has a special edge for letting ¢ readers read
the database at the same time. Such an edge is added if a configuration
C'a=((1.0),(r—1,1.0.0)) is reachable from some configuration
C',=((u,0),(r,0,0,0)) such that there is a decrease in the value of only symbolic
coordinates c;f C, (i.e. r). Such an edge corresponds to 1 instances of a transi-

tion.

4 a process is said to be in state 1 if its token is in state 1.

136

_-prep
writer / TP
] sdle
- enter \terit
»
(5 tenter
@‘//ezit *
{(u,0), (r,0,0,0j}
entcr

exit

{ (w-1,1). (0,0,r.0))
et~ ((1,0), 6,0,01))

Figure 7.8: Readers Writers Problem

3.3. Ring Topology: Induction Analysis

As the number of processes in a network (say, n) may be a large, variable
or unknown quantity, the construction of the global state graph is not feasible.
It is desirable to have a method that analyzes the network with a small
number of processes and then generalizes results to a larger n. The key idea
that can be frequently applied for many systems is that of induction. Instead
of studying the system with a large or an unknown number of processes, this
method analyzes it with a small number of processes and then the invariance
of assertions is analyzed with the increase in the number of processes. Since
the analysis is done for a small number of processes, the reduction in the glo-
bal state space is substantial. The principle of induction states that if an
observer cannot distinguish between two systems with ¢ and {41 processes
connected in a linear fashion even with an infinite input to both systems, then
he also cannot distinguish between a system with ¢ processes and any other

system with more than ¢ processes. It follows that it is sufficient to analyze

137

the network with i+1 processes for any input-output assertion on more than ¢

processes. This principle is illustrated in Figure 7.8.

observer I

Figure 7.8: Induction Principle for Ring Topology

We illustrate this by analyzing the dining philosopher's problem, of
which, Hoare [Hoare 85] remarks that, ”There is no hope that a computer will
ever be able to explore all these possibilities (for‘;z deadlock). Proof of the
absence of deadlock, even for quile simple finite processes, will remain the
responsibilily of the designer of concurrent systems.” To arrive at this con-
clusion, he computes the number of reachable states of philosophers by taking
the product of their states. We claim that with a smarter way of enumerating
possibilities, a computer need not explore all of them. For example, we could
analyze our algorithm for two dining philosophers instead of five philosophers
which will bring the number of possible states to a small quantity. We, of
course, have to show that the analysis does not change with the number. We

next describe the problem, a deadlock free solution and its automatic analysis.

138

3.3.1. Simple Induction

This problem, due to Dijkstra, requires an algorithm for philosophers who
are sitting around a circular table. There are five philosophers and five forks,
each-.of which is between two philosophers. There is a bowl of spaghetti in the
center which can be eaten by any philosopher but its tangled nature requires

that a philosopher use both his left and right forks.

A solution which assumes synchronous communication is as follows. A
philosopher, when hungry, either picks up both the forks simultaneously or
waits for them to be available. This way of picking forks guarantees that
there will not be any deadlock. To express our solution, we assume that ik
philosopher ouns i** fork and needs to ask only the right neighbor for the use
of i+1" fork. For convenience we will use u; ; to denote that i.picks up fork.j
and d; ; to denote that i.puts down fork.j. With this notation, Figure 7.9
shows the solution expressed in the STOCS model.

PHIL(i) PHIL(i+1)

Uiy U; 41
N O 0
u; IXd

, Uiy 42
/i P+1,i42
)
PHIL(1)| IPHIL(i4+1) Reachabllity for two philosophers
. ’/ A\
(12) (21

Uip1,542 di+l,i+2

Notation
u; ;= i.picks up fork j

d; ; = iputs down fork j

Figure 7.9: Dining Philosophers: Analysis

139

To show that the solution is deadlock free, we could use a computer to
explore the reachable states. In the past, automatic analysis meant exploring
the cross product of all possible states of five philosophers and five forks (or
hundred philosophers and hundred forks for a hundred philosopher problem).
Our technique, in contrast, exploits the symmetry in the problem so that the
complexity of analysis for five philosophers is the same as that of, say, one

hundred philosophers. Various steps in our technique are as follows:

(1) Let SYS,=(PHIL]|..| | PHIL; ;_,). Find the smallest value of k for
which §)5,=8YS,,,. For most symmetric cases k=1 or 2 will suffice.

For dining philosophers, §}'§;=5Y'S, as shown in Figure 7.10.

(2) To analyze a ring with any number of units, say n, it is sufficient to
analyze it with k41 units. Thus, for our case it is sufficient to analyze the
svstem with two philosophers to make any assertion about a system with

five or one hundred philosophers.

(3) We next construct a reachability graph for two philosophers and find that
there is no state with out-degree equal to zero (see Figure 7.10). We con-
clude from this that the system with five philosophers will also be

deadlock free.

3.3.2. Induction Analysis with Filters

Observe that simple induction required that the observer not be able to
detect the difference on any input. This constraint may prove too restrictive to
apply induction techniques for certain problems. Therefore, we relax the con-

dition using the concept of filters. Filters are formal mechanisms to capture

140

the condition that not all inputs may be possible for the system and therefore
we are willing to call two systems equivalent as long as their outputs do not

differ on possible inputs.

T —» > > —a—T0

-« —— t[

4

to‘-—*

r: reques! meseage
t: token message

w: whiten: normal
b: black d: delayed
¢: critical

Figure 7.11: Mutual Exclusion in a Ring
We illustrate the use of filters by a mutual exclusion algorithm in a ring net-
work. Clarke et.al.[Clarke 8] use the same example to illustrate their manual
induction technique. Dijkstra[Dijkstra 86] also uses the same example to show
how regular expressions can be used to prove the correctness of certain algo-
rithms. His proof, again, is manual. The mutual exclusion problem in a ring of
processes is as follows. The machines are connected in a ring fashion and can
communicate with their neighbors. Each process can be in one of the three
states: normal (n), delayed (d) or critical (¢). A process can execute the critical
region only if it is in the critical state. The objective is to ensure that at any
time at most one machine is in the critical state. We introduce the notion of a

token which is held by a single machine. To avoid passing tokens

141

unnecessarily, we introduce a request signal which indicates an interest in the
token. A process that wants to execute the critical region and does not have
the token gets delayed. Following Dijkstra's algorithm, tokens are sent to the
left, svhereas request signals are sent to the right (see Figure 7.11). We color
each of the process as white or black depending upon whether an interest in
the token exists to the left. Figure 7.11 shows the example of a distributed

mutual exclusion algorithm in a ring network expressed in the STOCS model.

If we try to apply the induction technique that was used for dining philo-
sophers we find that step 1 is not applicable, that is, there does not exist any &
for which SY'S, is the same as §YS,,,. This can also be seen intuitively from
the algorithm. An observer can detect the number of processes he is con-
nected to by sending multiple token messages. The number of processes in a
system would be equal to the maximum number of token messages that are

absorbed by the system.

P;1P,,,|Filter

Figure 7.12: Composition of two processes with the filter

142

To solve this problem, we use the notion of filters to constrain the
observer to send at most one more token message than he receives from the
output. We now show the steps in the modified induction technique using the
mutual ring example.

(1) Model all the constraints on the input output behavior through a process

called FILTER. Figure 7.12 shows such a filter for our example.

(2) Verify that a process in the system indeed satisfies the constraint imposed
by the filter. If we substitute all request messages in an ENTITY by e,

{;_y by t; and f. by {5 we do get the filter as a result.

(3) Find the smallest k such that a filtered system with k units is identical to
a filtered svstem with £+1 units. That is,
FILTSYS, =(ENTITY;||.... | | ENTITY, ;. _,||IFILTER).
For our example we find that FILTSYS#FILTSYS, but
FILTSYS.=FILTSYS,. It is easy to check that SYS,5£S8YS, ., for any
value of k.

(4) Thus from the principle of induction we deduce that it is sufficient to
analvze the algorithm with three processes to make an input-output asser-

tion on any number of processes greater than three.

4. Conclusions

Due to decreasing costs of hardware and advances in VLSI technology.
systems with multiple processes have become popular. Typically, a concurrent
algorithm on such architectures consists of multiple processes each of them

executing a very simple procedure. Examples of such paradigms of

143

computation are Hypercube algorithms and Connection Machine algorithms.
There is an acute need for systems that can analyze such distributed systems.
Automatic analysis of even finite state systems runs into the problem of state
space explosion. Since most distributed systems show symmetry, we suggest
techniques that exploit symmetry to reduce the state space. STOCS is a useful
model to represent symmetric distributed systems. We use symbolic reachabil-
ity and matrix equations to analyze systems expressed in the STOCS model
with star or broadcast topology. We use induction to reduce the number of

process that need to be analyzed in a ring network.

144

CHAPTER 8

ConC: Embedding of STOCS in C

1. Introduction

The availability of cheap bardware and communication facilities has made
distributed systems an attractive proposition. However, the difficulty of con-
current programming has kept it away from average programmers [Chandy
85]. In present concurrent programming languages systems, the communica-
tion aspects of a program are interwoven with computational aspects. As a
result, any analysis of the communication structure of the program is difficult.
By analysis, we mean questions such as - "Is a certain sequence of events possi-
ble?™, "Is a certain state reachable?” etc. To make concurrent programming
easier, the system should provide automatic analysis of the communication
aspects of a program. In addition, the communication aspects of the software
should be specified at a very high level of abstraction. Therefore, we had two
goals in designing the communication primitives - high level specification and
analyzability.

In this chapter, we propose two new constructs for concurrent program-
ming - handshake, a generalization of the remote procedure call, and unit, a
communication structuring mechanism. A handshake is shared among two or
more processes. Each process has a procedure-like interface with a handshake.
When all the participating processes call their handshake procedures, the
shared handshake body is executed. The unit construct is used to restrict the

sequence of possible calls to various handshake procedures and thereby provide

145

a synchronization mechanism between multiple processes. Thus, a unit can be
viewed as an automaton that specifies all possible sequences of bandshake pro-
cedures. The handshake and unit constructs form part of the STOCS Mode).
Sincé STOCS machines are theoretically equivalent to Petri Nets, all the
analysis techniques for Petri nets such as coverability tree [IKarp 68] and

matrix equations [Murata 84] are directly applicable to the STOCS.

In our paradigm, we support separation of concerns by separating tnter-
nal objects and external objects. Internal objects are specified in any standard
sequential programming language such as Pascal, C or sequential Ada. These
objects are used mainly to capture the computation aspects of the system and
do not concern themselves with either synchronization or communication.
External objects, on the other hand, are written as units and handshakes.
Theyv specify the computation that is directly related to communication. For
example, svnchronization is handled by these objects. They are mechanically
analyvzable for most interesting properties as their expressive power is less than

that of Turing machines,

The rest of the chapter is organized as follows. Section 2 discusses the
related work in the area of constructs for concurrent programming. In section
3. we discuss our constructs for concurrent programming. Section 4 discusses
the interaction betwéen computation and communication objects in our para-

digm. Section 5 discusses the status of the ConC project.

2. Related Work

Andrews and Schneider [Andrews 83| classify concurrent languages into

146

three categories. The shared memory based programming languages assume
that variables can be accessed by any process. To guarantee mutual exclusion,
constructs such as critical regions and monitors are used. Example of such
languages are Concurrent Pascal, Mesa [Mitchell 79] and Modula. AMessage
based programming languages provide send and receive constructs for com-
munication. Examples of such languages are CSP [Hoare 85] and PLITS [Feld-
man 79]. Operation based languages combine aspects of the other two classes.
They provide remote procedure call as the primary means of process interac-
tion. Ada, Distributed Processes [Brinch Hansen 78] and SR [Andrews 82] fall
in this class. Since the handshake construct extends the remote procedure call
for multi-party interaction, it belongs to this class as well. The features that
distinguishes ConC from related efforts are as follows:

(1) Synchronous Communication: We believe that programmers of distri-
buted systems should not have to deal with asynchronous communication as it
makes a program difficult to debug. and analyze. In this respect, we differ from
PLITS, and agree with the philosophy of programming languages such as Ada
and CSP.

(2) Multi-l?rocess Interaction: Many applications require interaction
between more than two processes and the user can program at a high level if
such a facility is directly provided by the language. CIRCAL [Milne 85], Rad-
dle [Forman 86), Multi-way Rendezvous [Charlesworth 88], PPSA [Ramesh 87],
and Script [Francez 83] have also suggested multi-party interaction in one
form or another. CIRCAL, Raddle and PPSA allow synchronization based on

matching of event names but do not provide a remote procedure call-like-

147

interface. Script shows bow details of multi-process interaction can be hidden
but does not provide direct support for the multi-party interaction. None of
them supports any form of analysis.

(3) Analysis of Interaction: As most errors in concurrent systems arise due
to erroneous specification of process interaction, any analysis of the interaction
will greatly increase the programmer's productivity. None of the above men-
tionéd languages supports analysis. Such analysis is more common for com-
munication protocols which is done mainly for specifications expressed in State
Machines, Petri nets or bounded variable programming languages [Sunshine
78]. One of the early at{empts to incorporate such analysis in a full fledged
programming language was Path Expressions {Campbell 74]]. Path Pascal
[Campbell 79] based on Path expression is, however, a shared memory based
language. Path expressions are also cumbersome to write and understand for
even slightly complex constraints. In addition, the analysis provided by Path
Pascal is not as extensive as that provided by ConC.

(4) Communication Abstraction Mechanism: Researchers in program-
niing languages have found abstractions a useful mechanism to increase the
understandability of the software. Consequently, current programming
languages provide control abstraction through loop constructs and procedure
calls, and data abstraction through abstract data types. One of the main funec-
tions of an abstraction is to provide only structured access to the primitives.
For exalmple' a control abstraction mechanism seeks to provide a structured
use of goto's. Similarly, the complexity of concurrent software has made it

necessary that goto's of the communication world (send, receive, remote

148

procedure calls etc.) be allowed only in a structured manner. Path expressions
specifv the sequence of procedures that can be made on shared variables and
therefore can be termed as the first attempt for providing such a mechanism.
Francez and Hailpern [Francez 83] were the first to coin the term and use it in
their proposal of Script. ConC provides structuring of the communication

primitives through the unit construct.

Table 1 summarizes some of the well known concepts that can be shown

to be special cases of constructs provided in the ConC.

Feature Example ConC
Synchronous communication | CSP handshake
Remote procedure call Ada parametrized handshake
Multi-process interaction Raddle multi-process handshake
Abstraction Mechanism Seript unit
Path Constraints Path Pascal | unit expressions
Reachability Petri Nets STOCS

Table 8.1: Special Cases of Handshake and Unit Constructs

3. Constructs

3.1. Handshake Construct

The remote procedure call has become one of the most favored communi-
cation primitive because of its similarity to the local procedure call, a well
understood concept. A handshake is a remote procedure call generalized for
multiple parties.

A handshake consists of the declaration of handshake procedures and a

shared body. The body of the handshake is executed only when all handshake

149

procedures have been called by their respective processes. Thus, handshake
can be used as a synchronization point of multiple proceses. For illustration,
consider the distributed players problem. Assume that there are four players
who are interested in playing various games as shown in Figure 8.1. Joe is wil-
ling to play chess, bridge or poker. Mary is willing to play any of the games
while Jack and Bob play only bridge or poker. Playing a game requires rende:z-
vous between two or more processes. This is achieved by handshake construct
as shown in Figure 8.2.

Distributed Players

Jack

Joe
% Bob
@) O
j\ Poker: Mary Bob I

Chess: Mary Bridge: Joe Mary Bob

Bridge: Jack Mary Bob Mary Poker: Jack Mary
Bridge: Joe Jack

Tennis: Mary % M.
ary

Chess: Joe

Polzer: Jack Bob
Bridge: Joe Jack Bob
Tennis: Joe

Figure 8.1: Distributed Player Problem
The above example illustrated the use of the handshake construct for syn-
chronization. The handshake construct is also useful for communicating data
from one process to the other. The handshake procedures may be called with

parameters. When the handshake is executed by the master of the handshake,

150

handshake bridge;

procedure Joe. bridge();

procedure Jack. bridge():
procedure Bob. bridge();
procedure Mary. bridge();

begin
end;
bridge(); bridge(); bridge();
process Joe process Jack process Mary

Figure 8.2: Handshake Construct for Distributed Player Problem
all the parameters are considered available. The body of the handshake can
use any of the parameters or its own local variable. As an example of a
handshake with parameters, consider the same example of distributed plavers.
Assume that Joe decides where they should meet for the game of bridge. The

revised handshake declaration is shown in Figure 8.3.

151

handshake bridge;
procedure Joe.bridge(Joeplace: alpha);
procedure Jack.bridge(var Jackplace: alpha);
procedure Mary.bridge(var Maryplace: alpha); -
procedure Bob.bridge(var Bobplace: alpha);
 begin
* Jackplace = Joeplace;
Maryplace = Joeplace;
Bobplace = Joeplace;
end;

Figure 8. 3: Handshake with Parameters

We next describe the syntax for the handshake construct using BNF. We use
{} to denote zero or more repetitions of the enclosed expression. Note that
the svntax of a handshake is symmetric for caller and callee in contrast to
Ada’s rendezvous where the callee uses accept and the caller uses entry pro-

cedure call to make a rendezvous.

; 2 handshake specification
< handshahe-d¢}> ::= handshake id '; <global-declaration>
{<proc_specs>} <local-declaration> <body> '}

; this section specifies types used in declaring parameters
< global-declaration> ::= the usual const and type declarations

; headers for various procedures which share the body
< proc_specs> ::= procedure id ({ <param> })"/
<param> := |var] id "' <type> '}

<local-declaration> ::= local variable declaration

: the body is executed when the handshake takes place
<body> := the usual programming language body

As another example of the handshake construct consider the synchronous send
provided in the Unix as a library facility. The handshake description of such a
primitive in ConC is shown in Figure 8.4. It specifies that when process P1

calls send and P2 calls receive with parameters, the associated body with the

152

]

handshake is executed by the first process named in the handshake (P1). Fig-
ure 85 shows handshakes when there is a buffer process that can store mes-
sages. For simplicity, we assume that the processes are interested in communi-
cating integers only. These examples illustrate that handshake construct can

simulate messages easily.

We impose certain restrictions on use of the handshake construct. The
svntax requires every participant in the process to be explicitly named. Simi-
larly, a handshake procedure cannot be called from within the body of another
handshake. These restrictions are required for the feasibility of automatic

analysis of the communication structure.

handshake syncsend,

const
MANLENG = 50:

type
message = array . MAXLENG] of char;
numbytes = 0..MAXLENG;

procedure Pl.send(senddata: message; scount: numbytes);
procedure P2 receive(var recdata: message,
var rcount: numbytes);

var i integer.
begin
for i:=1 to scount do
recdatali] := senddatali);
rcount ;= scount;
end;

Figure 8.4: Synchronous Send

153

F____

handshake pu!_item,
procedure sender.send(sdata: integer);
procedure bufler.inser{(var bdata: integer);
begin
bdata := sdata:
end:

. handshake ge!_item;

" procedure buller.remove(bdata: integer);
procedure receiver.receive(var rdata: integer);
begin

rdata := bdata:
end:

Figure 8.5: Asynchronous Send

Unit Specification

In the example of distributed plavers, players may have different con-
straints on their sequence of games. For example, Joe may wish to play only
tennis after chess. Similarly, in the example of buffered send, we did not
specify the huffer process. If the buffer process allowed pul_titem and get_item
in any order, the communication may be faulty. A single-buffer process
behaves correctly if it satisfies the constraint that a puf_item is always fol-
lowed by a gef_ifem and vice-versa. As a result, the sender mayv have to wait
for the receiver to read an item from the buffer process before it sends another
item. To express such constraints and therefore provide a high level synchroni-

zation mechanism, we provide the unit construct.

To describe all possible sequences of handshake procedures, we can use a
algebra based model (c.g. regular expressions) or transition based model (e.g.
finite state machines). The transition based model has the advantage that it is

is graphical, while the algebra based model is sometimes more natural to the

154

application. Our implementation uses unit machines, the transition based
model, for expressing the constraints. We can also use unit expressions because

a unit machine can be converted to a unit expression and vice-versa.

A unit is a directed graph where vertices are called places, and edges
between them are labeled by pames of handshakes. In addition, there is the
concept of tokens which may be thought of as residing in places. A handshake
can take place only if there is a token in the tail vertex (source place) of the
handshake. After execution, the token moves to the head vertex (destination
place). Figure 8.6 shows the linguistic and graphical equivalent of the con-
straints imposed by Joe. Figure 8.7 shows the linguistic and graphical
equivalent of a one-frame buffer. The marking construct is used to describe
the number of tokens at various places. The body of a unit consists of
enumeration of all transitions in the unit. These transitions are arranged on
the basis of their source places. A place name is followed by the description of
transitions, each consisting of a handshake name followed by the destination
place.

pul_ttem

gel_item
unavail avail

155

- Joe will play only tennis after chess

- Joe will play only bridge afler tennis

AN

chess N \\“3"”"‘8
chess ™
\ lenmis \
\\._/L\ w1
bridge. tenmiis

unit Joecomm;
marking [start:1]:
begin
start
> chess cstate;
> fennts tstate:
> bridge bstate,
¢state
> fennis tstate;
tstate
> bridge bstate;
bstate
> lennis tstate;
> chess cstate;
> bridge bstate;
end:

Figure 8.6: Unit Specification for Joe

(* put_item should be followed by a gef_item
gel_item should be followed by a put_item *)
unit bu ffercomm,
marking [unavail:1);
begin
unavail
> pul_ilem avail,
avail
> gel_ilem avail;
end;

156

Figure 8.7: Unit Specification of a One-frame buffer

Figure 8.8 presents the use of *-places to specify the unbounded buffer

problem in ConC.

(* the recetver must wail for the sender *)
unit buffercomm:
marking [unavail:*];
begin
unavail
> pul_item avail;
avail
> gel_ttem unavail:
end;

Figure 8.8: An Example of the Unit Specification

The BNF for the specification of a unit is as follows:

<upit_specs> = unit id ';" <marking>
{ <tran:itions> } end *;’

<marking> ::= marking

{'[' <placename> ' <num> ' } '}
<num> = "*" | integer
<transitions> 1= placename

{ "> transname placename ;' }

3.2. Guard Construct

For selective communication, we also assume that the language has the
guarded command construct as proposed by Hoare for CSP. A guarded com-
mand consists of one or more <guard, statement>> pairs. A guard consists of
a boolean condition and optionally a handshake. The handshake is enabled
only if the boolean condition is true. If an enabled handshake can be executed
(participating processes are willing to execute the handshake), the guard is

considered true and the statement corresponding to the guard can be executed.

The syntax of the guard construct is as follows:

< guarded_command>:: [<guard> ’->' <statement> |’
< guard>:: <boolean_condition> '&’ handshakeid

For an example of guard construct, consider the buffer process which may
communicate with either the sender or the receiver. Its specification is as fol-

lows:

int findex = 0;
int bindex = 1;

[
put_item -> insert(item);
findex = (findex + 1) mod size;
buffarray|findex! = item;
get_item -> remove(buffarray[bindex]);
bindex = (bindex + 1) mod size;
]

3.3. Mutual Exclusion between Two Processes

As an example of these constructs, consider the mutral exclusion between
two processes X and Y. The entire system has four handshakes - plin, plout,
p2in. p2out. Plin handshake requires participation from both the processes X
and Y. This is specified in the handshake declaration of plin. Plout, on the
other hand, does not need any coordination from the process Y. The unit con-
struct allows p2in to happen only if the process X is in a non-critical state.

The entire specification of the process X is given in Figure 8.9.

158

handshake pIin;
procedure X.plin();
procedure Y.plin();
begin
end;

. handshake plout,
procedure X.ploul();
begin
end;

(* communication unit for process X *)
unit mutexl;
marking|noncritical:1];
noncritical ;
> plin critical;
> pZ2in noncritical;
critical ;
> plout noncritical ;
end;

(* infernal computation for process X *)

main()
{ . .
int i;
for (i=1: i<=10: i++)
{
plin(};
(* this is the eritical region *)
plout();
}

Figure & 9: Mutual Exclusion Between Two Processes

3.4. Diningl Philosophers

A deadlock free solution to the dining philosopher problem (discussed in
Section 7.3.3) expressed in ConC is shown in Figure 8.10. get; ;, represents
that i* philosopher has taken possession of t+1" fork. The philosopher; does

not seek possession of i+1* fork unless it also possesses i™* fork. Note the

159

simplicity of the solution due to the availability of synchronous communica-

tion.

handshake gel, ;
procedure philosopher,.gel, ;
procedure philosopher,-_n.ge[‘.,{“;
begin
end:

unit philunit;;
marking|neutral:1};
neutral
> gel, ;1) eating;
> gel;_y; waiting;
eating
> pul; ;4 neutral;
waiting
> pul;_;; neutral;
end ;
process philosopher,;
begin
if hungry then begin
geti,i-ﬂ():
eat(});
pu’i,t'-i»l();
end;
end;

Figure 8.10: A Solution To Dining Philosophers Problem

Having stated a solution to the dining philosophers problem, we would like to
verify that our solution is indeed deadlock free. Current programming systems
tvpically require manual analysis for such questions. As we stated earlier, one
of our aim is to automatically analyze specifications expressed in handshake
and unit constructs. We can do so because these constructs are based on the

STOCS Model.

160

4. Interaction between Computation and Communication Objects

Each logical process is actually composed of two real processes: computa-
tion and communication process. The computation process communicates only
with 'its communication process, which in turn communicates with other com-
munication processes. Therefore, the actual communication between various

processes is as shown in Figure 8.11.

te

Communication

Communication

4

! Communication

] 1

Computation : Computation

Figure 8.11: Communication Structure of ConC programs

The computation process interacts with communication process by two means:

(1) Simple handshake call: As seen earlier the execution of a handshake may

require the participation of multiple processes. The computation process sends

161

an epable message to the communication process whenever it is ready for a
particular handshake and waits for a reply from it. The communication pro-
cess goes through a series of protocol messages with other communication
processes Lo agree on the execution of the handshake. If it succeeds, it tells the
computation process to proceed and send the relevant message to the master
of the handshake. If the handshake is pot possible because one of the par-
ticpant process has terminated then the communication process sends an error

message to the computation process.

(2) Calls from Guard: Since only one handshake is allowed in every guarded
statement. we conclude that if all participant processes are ready for a
handshake it can be always be executed. even if the handshake call is from a
guard. The computation process enables all the handshakes that are called
from the conditions of the guarded statements. It then waits for a reply from
the communication process. The communicatior process sends to the compu-
tation process, the name of the handshake it has committed. It is the responsi-

bility of the computation process to execute the handshake.

5. Implementation of the ConC System

The current ConC system consists of two sub-systems: ConC (ranslalor,
and STOCS analyzer. ConC translator generates a set of "C” processes from a
ConC program. These processes communicate using the semantics of a syn-
chronous handshake in STOCS. The executior of a handshake requires syn-
chronization between multiple processes similar to that required by a general-

ized CSP alternative command. Chapter 9 describes an algorithm for multi-

l62

handshake "C”
units

‘ \

< Xlator)

‘.,

N
['S \‘
r |
!
STOCS I e
L -
|
v
. .:/‘\\
_____________ b \
/) C” code
k\ Analyzer) enerator
\ \h_!//’
i *C" code

Deadlock errors

Figure 8 12: The Architecture of ConC System
process synchronous communication. ConC Translator is implemented on
SUN workstations with 4.2 BSD UNIX. STOCS analyzer analyzes a given
STOCS for the following type of queries: Is configuration C1 reachable? Is
there any configuration with no exits’(potential deadlocks) It is written in

Franzlisp and runs on 4.3 BSD UNIX.

6. Conclusions

This chapter presents two new constructs to support distributed computa-

tion - handshake and unit. The bandshake construct is a multi-process gen-

163

eralization of the RPC. The unit construct is used to specify the possible
sequences of handshakes and thereby provide a synchronization mechanism
between multiple processes. These constructs unify a large number of con-
cepts. such as semaphores, monitors, path expressions, input/output, remote
procedure calls and communication abstraction. These constructs are based
on a formal model called the STOCS model which is mechanically analyzable.
The analyvsis can be done with respect to reachable configurations of a STOCS

machine and the language accepted by it.

The proposal for ConC is unique in that it combines aspects from diverse
languages such as CSP, Ada, SCRIPT, Path Pascal, Raddle and PPSA. The
theory combines aspects from algebraic theory, net theory and forinal

language theory.

164

[
CHAPTER 9

Execution of STOCS Machines

1. Introduction

The STOCS model is based on the concept of handshake, a shared event.
Therefore, to execute a STOCS machine, we need a mechanism for implement-
ing shared events. Execution of shared events is required in general by distri-
buted systems which often need tricky synchronization between multiple
processes. Example of such shared events are: (1) distributed transactions in
databases that require commit by either all or none of the processes (2) atomic
broadcasts that require that a message be received by either all or none of the
receivers. Shared event is such an useful concept that it is not surprising that
it appears in coupled state machines, Petri Nets, CSP and CCS. Ease in
specification of concurrent systems using the concept of shared event provides

a strong motivation for the search of an efficient algorithm for its execution.

Multi-process shared event execution problem is as follows. Let there be n
geographically distributed processes. Each process is either waiting for some
event or executing. An event may require cooperation of two or more
processes. Each process when idle is willing to embark on any of the event that
is enabled in its current state. We assume that processes can communicate
with each other asynchronously by means of reliable messages. We have to

design an algorithm for executing shared events between these processes.

A< an evamnle of this problem in real life, consider the distributed players

problem. Assume that there are four players who are interested in playing

165

various games as shown in Figure 9.1. Joe is willing to play chess, bridge or
poker. Mary is willing to play any of the games while Jack and Bob play only
bridge or poker. Joe in state s, will play only tennis and only bridge in state
s3. Similarly, Mary plays only poker/tennis if she is in state s, and
chess/bridge if in state s;. Since games require cooperation between two or
more players the players may have to wait for each other. Also the players
are in different cities (i.e. on different processors) and can communicate only

through mail {(asynchronous messages).

Joe Mary
chess

tennis bridge

poker
tennis

bridge Jack

bridge poker Bob

Figure 9.1: Distributed Player Problem
Our algorithm makes following assumption on the communication net-
work:
(1) Reliable Messages: The algorithm assumes that all messages sent by
one machine to another are received uncorrupted in proper order. A ser-
vice can easily be provided by a communication protocol layer that

detects duplicate, lost, out-of-sequence and corrupt messages.

166

(2) Clock Synch-onization: The algorithm assumes that local and global
causality as proposed by Lamport is preserved by clocks of various
machines. This can easily be provided by an extra layer of clock syn-

chronization that uses Lamport’s algorithm.

This chapter is organized as follows. Section 2 describes the related work
in execution of shared events. Section 3 presents our algorithm for the execu-
tion. Section 4 describes the message complexity of the algorithm. Section 5
proves its correctness. Section 6 explores some efficiency considerations of the

algorithm.

2. Related Work

The execution of shared events also arises in implementation of the gen-
eralized I/O command of CSP. A CSP program, as described in [Buckley 83],
consists of a set of processes that communicate with each other using syn-
chronized message passing. Communication between processes occur when two
processes have matching input and output statements. The alternative com-
mand of CSP provides non-determinism by letting a process select one of the
several statements for processing. Each statement is protected by a guard (a
boolean expression and/or one input statement) which must be enabled for the
statement to be considered for selection. A guard is enabled if the boolean
expression evaluates to true and the named output process has not terminated.
However, not all algorithms are easy to express using only the constructs of
CSP. Researchers have found it useful to extend the notion of guard to

include output command and many implementations have been presented

l67

[Buckley 83, Bagrodia 86, Ramesh 87, Lee 87, Natrajan 86]. This generalized
CSP construct is obviously a special case of multi-process synchronous events

problem.

[Buckiey 83] presented four conditions that should be satisfied by an
effective implementation of the CSP 1/O construct. They showed that [Silber-
schatz 79, Snepscheut 81] did not satisfy one or more of these conditions.
[Back 84] improved upon this result by providing an implementation that
satisfied two more conditions. [Ramesh 87] provided an improved implementa-
tion which could be extended to allow multi process synchronization. We pro-
vide a new distributed algorithm that has following distinguishing features
from rest of the work: Our algorithm satisfies all six conditions, shows strong
fairness and is extensible to the case of multi-process synchronization. In addi-
tion, it is simpler than algorithms presented in iiterature{Buckley 83, Silber-
schatz 79]. We present in this chapter our algorithm, a proof of its correctness,
its message and time complexity. The proposed algorithm differs from its
predecessor [Ramesh 87] (referred to as R1 in subsequent discussion) which

shares the advantage of multiprocess synchronization in the following ways:

(1) Sequential Capturing: In R1, a process captures all processes partici-
pating in an events sequentially to avoid any deadlock. This can result in
a substantial delay for events that is shared by a large number of
processes. Since processes are captured for a long time it also means that
other processes may have to wait for a long time for captured processes to
be released. In our algorithm, a process tries to capture all participating

processes in parallel.

168

(3)

(4)

(5)

Message Load: In R1, no specific process is assigned as a master of a
handshake. This makes the algorithm look completely distributed at a
superficial level by making every process do the work of master. Thus, if
a handshake is shared by m processes, each of them may have to do
O(m) amount of work for that handshake. We, on the other hand, assign
a master for each handshake, thus simplifying the algorithm and reducing
the message load. We also provide algorithm for assignment of this coor-

dination such that the maximum load on any single process is minimized.

Fairness in Execution: In R1, a guard is chosen at random by each
process thereby guaranteeing that any guard has finite probability of
being chosen. We, provide a stronger fairness in the sense that we chose a
handshake which is coordinated by a master for the longest time. Our

definition of fairness implies fairness proposed by R1.

Timestamped Messages: R1 does not use timestamps in its algorithm.
Our algorithm requires global causality of timestamps and we assume that
there is a clock synchronization algorithm such as proposed by
Lamport|Lamport 78] running on the network. Since Lamport's algo-
rithm is very simple to implement and does not incur high penalty, this is
a not a serious drawback of our algorithm. Besides, due to usefulness of
global causality other algorithms may already be using a clock synchroni-
zation algorithm. Timestamps are also useful in ignoring outdated mes-
sage.

Ready Message: We use a set of messages called ready messages which

increase the probability that a request message succeeds. If a participant

169

of a handshake sends a ready message to the master, he is marked as
ready in a table. For performance reasons, we do not require processes to
send “not-ready” messages when they are not ready for a handshake.
Thus. an entry in a ready table can be treated only as a hint. If it indi-
cates that a process is not ready for a handshake then this is true for the
steady state of the system. However, if it says that a process is ready for

some handshake then this must be confirmed by a request message.

3. Description of the Algorithm

Informally, the algorithm is as follows. Each handshake is assigned a
master. A master can execute a handshake if all participating processes com-
mit to it. A process can commit to a handshake by sending a yes message to
its master. A master requests for these messages by means of request messages.
A reques! message may be either be delayed or responded with a yes message,
or a no message. If all the participating processes commit the master sends a
success message to them. On receiving a success message, a process can exe-

cute the handshake.

When a process is in execution state (executing some handshake), it
responds to only two kinds of messages- ready and request. For ready message

it makes a note in its ready table whereas a request message is replied by a no.

Once a process comes to an alterpative command it first sends ready mes-
sage to all the masters for the guard it is ready to execute. Then if any transi-
tion is ready and it sends out request messages. After this the process takes an

action only on receiving a message.

170

(1)

(3)

(4)

Some of the features of this algorithm are as follows:

A process can send a yes message to at most one master. Thus, a process
commits to at most one master. A process that has committed to a
handshake can not send request message for any other handshake. This
way of committing resembles two-phase commit protocol used in data-
bases for implementing transactions. The difference between two problems
is that in databases if two transactions £, and £, are eligible at some state,
then the protocol needs to ensure that the final execution can be written
either as ¢, or {5t;. In our problem, once a ¢, is executed t; may not be
valid any more. For example, initially both tennis and chess may be eligi-

ble, but once tennis is played chess may not be eligible anymore.

A process that has already committed, on receiving a request for another
handshake, savs no to a younger process and delays the older process. If
the process is the master of its committed handshake and the handshake
has not received all the yes messages then it is aborted in favor of an
older handshake. This way there cannot be any deadlock between
different handshakes. This strategy is commonly referred as wait die stra-

tegy in databases as discussed in [Eswaran 76].

Processes always include the timestamp of the handshake they are
responding to. This has the advantage that the messages that are obsolete

can be detected and therefore ignored.

The fairness is based on the principle of serving the master who has

served the longer. With each request message for a handshake, the master

171

sends the time of the event it coordinated before.
The algorithm as shown in Figure 9.2 use the following messages:

ready:
sent by a process to the master of a handshake indicating its willingness

to execute the handshake This message can be sent to multiple masters.

request:
sent by the master to processes for the yes/no reply, With a request mes-
sage, the master also sends the time of the last shared event it executed as

a master.

yes:sent by a process to the master of a handshake indicating its willingness

to execute the handshake. This message is sent to only one master.

no: sent by a process to the master of a handshake indicating that 1t has com-

mitted for some other handshake

success:

sent by the master to processes asking them to execute the handshake

abort:

sent by the master to processes asking them to abort the handshake

172

Background()
if (mtype = ready) update(ready_table)
else if (atype = request) reply(currmess, no);

Initialize()
captured = 0; delayed[]=0; initialize_guards;
send ready messages to various masters;
if any trapsition is ready then sendrequest (2ytrans);

Handle_Ready()
update(ready_table);
it (the transition is ready) and
(I am not exploring any other transition) then sendrequest;

Handle_Request()
it (guard([trans]=closed) reply(currmess, no);
else if (mytrans = 0) /*Iam not committed */
mytrans:=trans;
reply(currmess, yes);
else if (timestamp[trans] > timestamp[captured])
reply(currmess, po);
elue if (master[captured] = myid)
sendabort (aytrans);
Rytrans = trans;
reply(currmess, yes);
else delayed[currmess.src]=trans;

Handle_Abort()
try_another_transition;

Handle_Suce()
if (captured = currmess.traes)
taketrans(currmess.trans);

Handle_Yes()
checklist {currmess.src)=0;
if all_bave_responded_yes
taketrans(currmess.trans);
sepdsucc(curraess.trans);

Handle_No()
retatus[trans] (erc] = false;
sendabort (trans);
try_another_transition;

try_another_transition()
if apy process delayed respond to it;

else if any transition ready send request
else send ready to masters vhich have been sent mo

Figure 9.2: Algorithm for Execution of Multi-process Events

173

Some of the data structures are as follows:

ready_table: a table maintained by the master of a handshake. As explained
earlier, this table is only one way correct.

delayed_list: list of all masters that have been delayed by me.
guard[handshake]: Is the handshake enabled in my current state.

captured: master that has captured me

4. Message Complexity
The Worst Cuse

We will calculate the number of messages a process has to handle in the
worst case before it is guaranteed to succeed. We first calculate the number of
times a handshake can abort. By our fairness rule, a process can be aborted in
favor of some other process at most once. Thus, if there are p processes which
are master of some handshake, then a handshake of the process must succeed
after p—1 or less number of attempts. Hence, the number of requests to a pro-
cess for a guard is less than or equal to p—1 and correspondingly the number
of aborts is less than or equal to p—2. There is at most one success message.
Therefore, the number of messages in the worst case for a master guard with d

slaves to succeed in executing a handshake is:

ready messages at most (p—~1)d in number
request message at most (p—1)d in number
no at most (p—1)d in number

yes at most (p—1)d in number

abort at most (p—2)d in number

succeed at most d

Total: 5(p—1)d messages

174

The Best Case

In the best case, there will be no aborts; therefore, a master guard will be
successful in 4d messages. A slave guard will require four messages for suc-

cessful execution of a handshake.

5. Correctness of the algorithm

In this section, we prove that the algorithm shown in Figure 9.2 is correct.
The correctness of the algorithm is shown in two parts. We show that the
algorithm 1is safe, that is it can ask a process to participate in at most one
handshake. We also show that the algorithm is live, that is if one or more

handshakes are enabled, the system will execute some handshake.

5.1. Safety Property
Theorem 9.1: Each process can be asked to participate in at most one

handshake.

Proof: A process commits for a handshake only if it has sent yes in response
for the handshake or it is master for that handshake and has sent request mes-
sages. Since a process can have at most one outstanding yes message if it has
not sent out any request message and none if it has sent, a process cannot

commit for two handshakes. Q.E.D.

5.2. Liveness Property

Theorem 9.2: If one or more handshakes are eligible then the system will

execute a handshake.

175

Proof: Consider the master of the handshake who has waited for the longest
time. When this master sends out the request message, if all processes respond
with yes, the handshake can be executed. Since the handshake is eligible and
has the highest priority, no process can send no for the handshake. The only

other option for them is to delay their response.

We define the delay graph D as a directed graph D = (V, E) where V is
the set of all the processes. There is a directed edge from process v; to v, if
there exists a process that has delayed v, in favor of v,. This implies that the
priority of v is greater than v, because we delay the older process. Global
causality implies that the graph is acyclic. We traverse the path of processes in
the delay graph. Since the delay graph is acyclic, we will reach a node which
has no outgoing edge. This process being youngest will receive answer from all
the processes and therefore can send success /abort message to all its processes
in its set which then can reply to their delayed masters. If the decision was
abort then the path delay graph has less number of edges and this particular
handshake will not be explored again. If the decision was success, a handshake

is executed. Q.E.D.

For example, consider the example of distributed players. Let Joe be the
master of tennis, Mary of chess, Bob of poker and Jack of bridge. Let the last

time each game was played be as follows:

Tennis 12
Chess 15
Poker 14
Bridge 18

Assume that tennis is eligible because all participating players are willing to

176

play it. Assume the Bob and Mary are willing to play poker but Jack is not.
Consider the following event sequence:

(1) Bob sends a request to Mary for poker who responds yes as she has not
committed to any other game.

{2) Joe sends request for tennis to Mary who delays the response to this mes-
sage.

(3) Bob sends request for poker to Jack who responds with a no message.

(4) Bob sends abort for poker to Mary, who now can respond to the delayed
request of Joe.

(5) Joe can now send success message to Mary, who then can execute the

handshake.

5.3. Effective Implementation

Theorem 9.3: The algorithm satisfy all the six criteria of effective implemen-
tation as proposed by [Buckley 83] and extended by [Back 84, Ramesh 87].
The six criteria are as follows.

{1) The number of processes that are involved in the selection of a guard
should be minimum.

(2) The amount of system information that each of these processes should be
low.

(3) When a handshake is ready then it will be selected within a finite time.

(4) The number of messages exchanged for making a selection by any process
is small.

(5) The time it takes for a process to determine whether it can establish com-

177

munication with some other process should be bounded.

(6} If a process has a guarded command that is infinitely often enabled, then it
should eventually succeed.

Proof: {1) and (2) are obvious from the algorithm. (3), (4) and (5) follows
from Theorem 9.2 and the message complexity analysis. (6) follows from our

fairness conditions. Q.E.D.

6. Efficiency Considerations of the Algorithm

In the above algorithm, we did not discuss how we chose masters for each
handshake. The efficiency of the algorithm is dependent on this choice. We
discuss some desirable requirements for the choice and strategies to assign

masters based on the requirements.

6.1. Minimum Maximum load of any node

The algorithm, as presented above, is unfair with respect to the master of
the handshake who may have to deal with more messages than other partici-
pating processes. To prevent any machine from getting overloaded, we may
choose masters such that the maximum load on any machine is minimized.
The problem can be stated formally as follows: Let M and H represent the set
of machines and the set of handshakes respectively. Let the degree of a
handshake A be the number of machines which participate in it. Our problem
is to find an assignment of master for hanshakes, f:H— M, such that the max-
imum load on any machine is minimized. The load of a machine is defined as
the sum of degrees of all handshakes for which it acts as a master. For exam-

ple, consider the example in Figure 9.1. The degree of various handshakes is

178

as follows:

Chess: 2

Tennis: 2

Poker: 3

Bridge: 4

A possible master assignment is as follows:

Chess, Poker: Mary

Tennis: Joe

Bridge: Jack

The maximum load in this assignment is on Mary who has to the load of Chess
(2) and Poker (3). If Bob is assigned as the master of Poker, then Jack will

have the maximum load of Bridge (4).

Theorem 9.4: Let there be m machines and n handshakes. There exists
an algorithm with O(log(mn)m?n?®) time to find the master assignment f:H-

>M, such that the maximum load on any machine is minimized.

Proof: We consider a related problem which seeks the assignment of masters
such that the maximum load on any machine is less than K. Let the total load

(the sum of degree of handshakes) be S.

(11,11)

Figure 9.3: Minimizing the Maximum Load

179

This problem can be solved as feasible circulation in a network with upper as
well as lower bounds on the capaci.y of each edge. We add a pseudo source s
and a pseudo sink ¢ with the following bounds:

Us.h)=ul(s,h;)=l{h;;m;)=ulh;m)=degree(h;)

l(m;,t)=0u(m,; t)=K (t,s)=Su(t,s)=S Vh,eH, m;eM

Figure 9.3 shows the assignments to various edges. Using Out-of-Kilter
method[Lawler 76], this problem can be solved in O{m?®n?) where m is the
number of machines and n is the number of handshakes. Using the solution to
decision problem, we can solve the minimization problem in O(log(mn)) time
using a binary search. Thus, the problem of finding master assignment such
that the maximum load on any machine is minimized can be solved in

O(log(mn)m*n?).

6.2. Minimum Total Number of Messages

An alternative optimization criterion could be the minimization of the
number of messages required in the overall system. As shown for the calcula-
tion of the message complexity of the algorithm, the number of aborts are
minimum if the number of processes acting as master is minimum. This is easy
to see intuitively. If there are more processes that can act as master, there are
greater chances that these processes will attempt a handshake which requires a
common process and therefore some of them will be aborted. In the limiting
case, (that is if we were allowed to have just one global master), there will be
no aborts. This extreme, however, violates our condition on effective imple-

mentation which requires that the number of processes involved in deciding if

180

a handshake should be executed must be minimum. Thus, our aim is to
minimize the number of masters with the condition that the master must be
one of the participants for the handshake. Unfortunately this problem is NP-
complete as shown by Theorem 9.5.

Theorem 9.5: The master assignment problem such that the number of mas-
ters is miniminzed is NP-complete even for the case where each handshake is
shared by exactly two processes.

Proof: We reduce the vertex cover problem known to be NP-complete to mas-

ter assignment problem by treating vertices as processes and undirected edges

as handshakes between these processes. The vertex cover problem is as follows:
Instance: Graph G=(V,FE), positive integer K < | V.
Question: Is there a vertex cover of size X or less for G, i.e. a subset VTCV
with | V'] <K such that for eacﬁ edge {u,vv}eE at least one of u and v
belongs to V',
We reduce each edge {u,v} to a handshake between machine v and v. If
this handshake is assigned to u then we include v in V' and vice-versa. Q.E.D.
Since the number of processes may not be very large and the computation
of master is done only once, it may still be feasible to compute the optimal
master assignment. However, since the number of processes may not be very
large and the computation of master is done only once, it may still be feasible

to compute the optimal master assignment.

181

7. Conclusions

We have proposed an efficient implementation of the shared events in a
distributed environment. Our solution can be used to execute STOCS
machines (an‘d therefore, also Petri nets). It is also applicable for implementa-
tion of the generalized CSP 1/O command. Our algorithm is conceptually

simpler and more efficient than existing algorithms.

182

CHAPTER 10

Conclusions

1. Summary of the Work

In this repont, we have tackled the problem of formal specification
and analyvsis of message based asynchronous councurrent systems. We have
defined a new model of concurrent computation called the Synchronous Token
based Communicating State (STOCS) Model. The STOCS model combines
the advantages of net-theoretic and algebraic approaches for the study of con-
current systems. It is amenable to net-theoretic analysis because the reacha-
bility problem in a Petri net is reducible to that in a a STOCS machine and
vice-versa. It is easier to use than Petri nets as it supports modularity in
specification and analysis. For example. we have shown that analysis of safety
properties can avoid searching global state space by considering only the
relevant modules. To show that the model also supports algebraic
specification, we prove that STOCS machines can be characterized by con-
curren! regular ezpressions. Concurrent regular expressions extend classical
regular expressions with three operators - interleaving, alpha closure and syn-
~hronous composition. As an application of this result, we provide an algebraic
characterization of Petri net languages.

Based on the STOCS model, we propose two new constructs, handshake
and unit, to support concurrent computation. The handshake cobstruct is a

generalized remote procedure call for multiple parties. The unit expression is a

generalized path expression which provides conditional synchronization by

183

restricting the possible sequence of calls to handshakes. Any program that has
its communication aspects specified using these constructs can be analyzed for
logical correctness of its communication. We have developed a fair and
efficient algorithm for execution of multi-process shared events required for
implementation of our constructs. Our implementation extends "C” for con-
current progranming and the current version runs on Unix 4.3 BSD. We con-
clude that the STOCS model is a good starting point for modeling asynchro-

nous concurrent systems based on synchronous communication.

2. Future Work

The novelty and simplicity of the STOCS model has opened up a large
number of interesting issues in specification and analysis of concurrent sys-
tems. We now discuss some open problems in each of the important aspect of

using the STOCS model.

2.1. Specification

e Reduction of non-determinism: A non-deterministic finite state machine can
always be converted to a deterministic finite state machine. This fact leads to
many advantages, as it might be easier to specify a system using non-
deterministic finite state machine but easier to simulate a deterministic finite
state machine. Along similar lines, it is desirable to convert a non-deterministic
STOCS machine to a deterministic STOCS machine if possible. This may not
always be possible as we do not know whether the family of languages
accepted by DSTOCS machines is the same as that accepted by STOCS

machines. More research is required for algorithms to convert a STOCS

184

machine to a DSTOCS machine.

e Canonical Representation of a STOCS Machine: A deterministic finite state
machine can always be minimized with respect to its number of states. Besides
saving in the number of states, this has the advantage of providing a canonical
representation of a finite state machine. Thus to check whether two finite state
machines are identical, we need only convert them to their canonical forms. In
an analogous fashion, it is desirable to have a canonical representation of a
STOCS machine which can be used to check equivalence between two STOCS
iachines.

e Language Preserving Transformations on STOCS Machines: A finite state
machine can be optimized fqr its number of states by the minimization algo-
rithm. Similarly, it is desirable to have language preserving transformations on
STOCS machines which may minimize the number of places, minimize the
number of units, minimize the number of *-places, minimize the non-

determinism or maximize the concurrency possible in the system.

e Modeling of General Linear Constraints: In section 3.4, we gave examples of
units that modeled some simple linear constraints on the number of
occurrences of symbols in a string, sich as n,=2n,. We conjecture that ary
linear constraint with rational coefficients can be modeled by a unit. The con-
jecture is true if a set of strings which satisfy a linear constraint also satisfies
the property that there exists a constant M, such that any string longer than
M can be written as interleaving of strings smaller than M. A constructive
proof for the truth of the conjecture will provide a technique to synthesize a

STOCS machine from a set of linear constraints.

185

e Hierarchical Modeling and Analysis: Hierarchical modeling reduces the com-
plexity of the systein by providing abstraction. If a system that is expressed
hierarchically can also be analyzed hierarchically, then a substantial saving of
computational effort may be possible during its analysis. In STOCS model, an
internal procedure can be modeled by a transition. More research is required

to make the model more amenable to hierarchical specification.

2.2. Relationship with Petri nets

e Polynomial reduction of reachability in STOCS to Petri Nets: A free labeled
STOCS can be directly converted to Petri Nets in linear time using Lemma 3.
Similarly using Lemma 2 reachability problem in a Petri net can be converted
reachability in STOCS using linear time. However, we do not know of any
method to transform reachability in a general STOCS to a Petri net in polyno-
mial time.

e Exact Relationship with Petri Net languages: From Theorem 5.3, we know
that concurrent regular languages are contained in Petri net languages. The
question that remains to be answered is: Is the inclusion proper? In other
words, are there Petri net languages which are not concurrent regular ? Our
current belief is that this is the case. Our belief is based on the fact that Petii
net languages are closed under concatenation and union, and this does not
seem plausible for concurrent languages. In particular, we have not been able

to construct STOCS machine that accepts (ab)@.(bc)Q.

e Minimum Number of Connected *-places: *-places are the only sources of

unboundedness and therefore it is desirable to minimize the number of

186

connected *-places. By our construction, each unit can have at most one *-

place. Thus the problem is reduced to decomposing a Petri net into units such
that at most K of them have connected *-places. A unit assigned the number
K has a connected *-place iff there exists a transition t such that there exist a
place assigned the color K as input of the transition, or output of the transi-

tion but not both. Rephrasing the above, we get the following problem:
Instance: An ordinary Petri Net N= (P,T,1,0) and 0<K < | P|

Question: Is there a function f:P->{1,2,... M} such that f(p,)#f(ps) whenever
{py p)elTYV (p.p2icC(ljior some tel, and for all places p; such that

f(p))> K. i piel(t)UO(t) then Tpa:f(pa)=1(p;) 4 pl(t)UO(t).

2.3. Algebraic Representation of a STOCS Machine

e C'anonical Representation of CRE's: To check the equivalence of two con-
current regular expressions, it is important to have a canonical representation

of concurrent regular expressions.

e Optimization of CRE's: It is desirable to reduce the number of [|'s or a's in a
given expression. This problem may be quite hard, as a similar problem for

regular expressions (star-height problem) is still open.

2.4. The Language of a STOCS Machine

e Family of Languages of k-STOCS: A k-STOCS is defined as a STOCS with
at most k units. We conjecture that the family of languages accepted by a (k-
1)-STOCS is properly contained in k-STOCS. Chapter 5 show that 1-STOCS

is properly contained in 2-STOCS. In Garg 88, we have shown that the conjec-

~1

[
m

e ————

ture is true for FLSTOCS.

e Closure Properties of STOCS Languages: STOCS languages are clearly
closed under synchronous composition. As Petri nets are not closed under
Kleene Closure, we also know that concurrent regular languages are not
either. It is still an open problem whether concurrent regular languages are

closed under +, ., @ and | }.

2.5. Modeling of Uncontrollable Events

e Efficient Construction of URE from UFSM: In this chapter, we provided an
efficient construction of UFSM's from URE’s. Our construction of URE from a
UFSM. however, requires calculation of regular expression for minimal accep-
tance set the UFSM. As a result, the final expression has a single @ but may
be very long. We do not know of any method of exploiting & operator more

efficiently so that a smaller expression is calculated from a given machine.

e Axiomatic Proof System: We can check the equivalence of two expressions
(machines) if they could be converted to a canonical representation. An alter-
native method is to provide sound and complete axioms and rules of inference

such that any relationship between two expressions can be proved.

2.6. Analysis of STOCS Machines

e Analysis of General Regular Topology: In chapter 7, we saw how machines
connected in star, broadcast or ring topology can be analyzed. Some of the
other interesting topologies are regular topologies such as hyper-cube in which

each processor has three neighbors. An interesting task for investigation is the

188

generalization of these techniques for identical processes connected in any arbi-
trary topology.

e Reachability in k-STOCS: For symbolic reachability, matrix equations led us
to necessary but not sufficient conditions for reachability. We are investigating
efficient techniques which gives conditions both necessary and sufficient for
reachability in a restricted class of STOCS model: STOCS machines with at

most k units.

e Stopping Rule for Induction: For application of the induction technique, we
need to find a k such that the system with k processes is equivalent to a sys-
tem with k41 processes. It was easy in our examples where k& had small

values(1 and 2). There needs to be a more general algorithm for selecting k.

e Performance Analysis: Timed Petri Nets and Stochastic Petri nets have beer
used extensively for performance analysis of diverse kind of systems. It is easy
to extend definitions of the STOCS model to simulate Timed or Stochastic
Petri nets, but it remains to be seen if the modularity in STOCS model is also

beneficial in performance analysis of concurrent systems.

2.7. Incorporation of the STOCS model in a Programming
Language

e Naming: The current design uses explicit naming of processes in the spirit of
CSP. As for CSP, this may prove restrictive and use of port names may be
preferred. We have chosen to keep the initial prototype simple and the future

design may include port names.

18Y

e Extension to Asynchronous Communication primitives: The current process
allows only synchronous communication primitives. Asynchronous message
passing can be specified using an extra buffer process. We chose to keep syn-
chronous primitives only, as reasoning with asynchronous processes is error

prone and cumbersome.

e Dynamic Process Structure: The current design also restricts the process
structure to be static. This implies that unbounded process activation and
recursive process activation is not possible. This restriction is a direct conse-

quence of our aim of keeping the construct analyzable.

e Exception Handling, Fairness: The current design assumes an error free reli-
able message service. It also does not address the issues of process failures,
reliability, exception handling and security. Similarly specification of priority
and issues arising due to fairness concerns are not considered here. The notion

of time is also missing in the current design.

In conclusion, this dissertation is a first step towards a model that com-

bines advantages of net-theory and algebraic theory of concurrent systems.

190

References

[Ackerman 82]W.B. Ackerman, "Data flow languages”, Computer 15,2, pp 15-23,
1982,

[Aggarwal 87]S.Aggarwal, D. Barbara, K.Z. Meth, "SPANNER: A Tool for
Specification, Analysis, and Evaluation of Protocols”, IEEE Transac-

tions on Software Engiueering, Vol 13, 12 December 1987, pp 1218-
1237.

[Aggarwal 84]S.Aggarwal, R.P.Kurshan, Automated Implementation from For-
mal Specification”, Protocol Specification, Testing, and Verification,

IV, North Holland 1984.

[Alford 8] M. Alford et. al, "Distributed Systems - Methods and Tools for
Specification”, Springer Verlag, LNCS 190, 1985.

[Ada 83] Reference Manual for the Ada Programming Language, United
States DoD, Washington, ANSI/MIL-STD-1815A-1983, 1983.

[Anderson 88]D.P.Anderson, ”Automated Protocol Implementation with RTAG”,
IEEE Transactions on Software Engineering, Vol 14, 3 March 1988,
pp 291-300.

[Apt 80] K.Apt, N.Francez, W.de Roever,” A Proof System for Communicat-
ing Sequential Processes™, ACM TOPLAS 2,3(July 1980)

[Andrews 82] G.R.Andrews, "The Distributed Programming Language SR -
Mechanisms, design and implementation”, Software Practice and
Experience 12, 8 ,Aug 1982, pp 719-754

[Andrews 82] G.R.Andrews, F.B.Schneider, "Concepts and Notations for Con-
current Programming”, Computing Surveys, Vol. 15, No. 1, March
1983, pp 3-43.

191

[Back &4] R.JR. Back, P. Eklund, and R. Kurki-Suonia, "A fair and efficient
implementation of CSP with outpur guards”, Tech. Report No. 3%
Abo Akademi, Finland, 1984.

[Backus 78] J. Backus, "Can Programming be Liberated from the von Neumann

Style”, Comm. ACM, 21, 8, pp 613-641, 1978.

[Bagrodia 86] Rajive Bagrodia, A Distributed Algorithm to Implement the Gen-
eralized alternative command of CSP”, Proc. of International
Conference on Distributed Computing Systems (ICDCS), pp 422-
427, 1986.

[Bernstein &0]A.J. Bernstein, "Output Guards and Non-Determinism in CSP”,
ACM Toplas, 2(2), April 1980, pp 234-238.

[Billington &8]J.Billington,G.R.Wheeler, M.C.Wilbur-Ham, "PROTEAN: A High-
Level Petri Net Tool for the Specification and Verification of Com-

munication Protocols”, IEEE Transactions on Software Enginecering,

Vol 14, 3 March 1988, pp 301-316.

[Blumer 86] T.P.Blumer and D.P.Sidhu, "Mechanical Verification of Automatic
Implementation of Communication Protocols”, IEEE Trans. on
Softw. Engg., Vol 12, 8 August 1986, pp 827-843.

[Bochmann 80]G.v.Bochmann, P. Merlin, "On the construction of communication
protocols”, in Proc. Inter. Conferenée on Computer Communication,
1980.

[Brinch Hansen 75]

P. Brinch Hansen, "The Programming Language Concurrent Pas-

cal”, IEEE Trans. Softw. Engg., SE-1,2, pp 151-164, June 1975.

(Brinch Hansen 78]
P. Brinch Hansen, "Distributed Processes: A concurrent Program-

ming Concept™, Comm. ACM 21, 11, Nov 1978, pp 934-941.

[Buckley 83] G.N.Buckley, A.Silberschatz, "An Effective Implementation for the
Generalized Input-Output Construct of CSP”, ACM transactions on

192

programming languages and systems (TOPLAS), April 1983.

[Campbell 74]R.H.Campbell, A.N.Habermann, "The Specification of Process Syn-
chronization by Path Expressions”, Lecture Notes in Computer Sci-
ence, vol 16, Springer Verlag, New York 1974, pp 89-102.

[Campbell 79]R.H.Campbell, R.B.Kolstad, "Path Expressions in Pascal”, Proc. 4th
International Conference on Software Engineering, Munich, IEEE
New York, 1979, pp 212-219.

[Cerf 72] \.Cerf, "Multiprocessors, Semaphores, and a Graph mode! of Com-
putation,” Ph.D. dissertation, Computer Science Department,
University of California, Los Angeles, California, April 1972.

[Chandy &5] K.M.Chandy, "Concurrent Programming for the Masses”, Proc. 4h
Principles of Distributed Computing, 1985.

[Charlesworth 87)
A. Charlesworth, "The Multiway Rendezvous”, ACM Trans. on Pro-
gramrﬁing Languages and Systems, Vol 9, No.2, July 1987, pp 350-
366.

[Clarke 86] E.AlLClarke, O. Grumberg and M.C.Browne, Reasoning about Net-
works with many Identical Finite-State Processes, proc. of Principles

of Distributed Computation, 1986.

[Courtois 71] P.J.Courtois, F.Heymans, D.L.Parnas, ”Concurrent Control with

readers and writers”, Comm. ACM, 10, pp. 667-68, Oct 1971.

[Dijkstra 85] Invariance and Non-determinacy, in Mathematical Logic and Pro-
gramming Languages, C.A.R. Hoare and J.C. Shepherdson, Eds.
Prentice-Hall, 1985, pp 157-163.

[Dong 83] S.T.Dong, "The Modeling, Analysis, and Synthesis of Communica-
tion Protocols™, Ph.D. Dissertation, UC Berkeley, 1983.

[Eswaran 76] K.P.Eswaran, J.N.Gray, et.al.,"The Notion of Consistency and
Predicate Locks in a Database System”, Comm. ACM, 18(11), Nov

193

1976, pp 624-633.

[Feldman 79] J.A Feldman, "High Level Programming for Distributed Comput-

{Filman &4]

ing”, Comm. ACM 22, 6, June 1979, pp 353-368.

R.EFilman and D.P. Friedman, ”Coordinated Computing, Tools
and Techniques for Distributed Software”, McGraw-Hill, 1984.

[Forman 86] L.R.Forman, "On the Design of Large Distributed Systems”, Proc.

International Conference on Computer Languages, 1986.

[Francez 83] N.Francez, B.Hailpern, ”"Script: A Communication Abstraction

[Garey 79]

[Garg 88a]

[Garg &Rb]

[Garg 8&c|

[Gehani 84|

[Genrich 80]

Mechanism”, Proc. of 2nd Symposium on Principles of Distributed

Computing, 1983.

M.R. Garey, D.S. Johnson,” Computers and Intractability, A Guide
to the Theory of NP-Completeness”, W.H. Freeman and Company,
1979.

V.K.Garg, "Specification and Analysis of Concurrent Systems Using
STOCS model™, Proc. of Computer Networking Symposium, Wash-
ington D.C. 1988.

V.K.Garg, "Analysis of Distributed Systems with many Processes”,
Proc. International Conference on Distributed Computing Systems,

San Jose, 1988.

V.K.Garg, C.V. Ramamoorthy, "High Level Communication Primi-
tives for Concurrent Systems” Proc. International Conference on
Computer Languages, Miami, 1988.

N.H. Gehani, W.D. Roome, "Concurrent C”, Memorandum, Bell
Labs, Murray Hill, 1984.

H.J. Genrich, K. Lautenbach and P.S. Thiagarajan, "An overview of

Net Theory™, Proc. Advanced Course on General Net Theory of
Processes and Systems, LNCS 1980.

194

[Gerhart 80 S.L Gerhart, et al, "An Overview of Affirm: A Specification and

[Hack 73]

[Hack 73]

[Hewitt 79]

[Hoare 8&4]

[Hoare 8&5]

Verification System”, Proc. IFIP 80, pp 343-348, Australia, October

1980.

M.Hack, "Decision Problems for Petri Nets and Vector Addition
Systems™, Tech. Memo 59, Project MAC, Massachusetts Institute of
Technology, Cambridge, Massachusetts (March 1975).

M. Hack, "Petri Net languages”, Computation Structures Group
Memo 124, Project Mac, Massachusetts Institute of Technology.
June 1975.

C. Hewitt, G. Attardi, H. Lieberman, ”Specifying and Proving Pro-
perties of Guardians for Distributed Systems”, LNCS 70, 1979.
C.A.R.Hoare, S.D.Brookes, A.W. Roscoe, A Theory of Communi-
cating Sequential Processes”, Journal ACM, Vol 13, No 3, pp 560-
599, July 1984.

C.A R. Hoare, Communicating Sequential Processes, Prentice-Hall.

Inc., Englewood Cliffs, New Jersey 1985.

[Hoperoft 79) J.Hoperoft and J.Ullman, “Introduction to Automata Theory,

Languages, and Computation”, Addison-Wesley Pub. Co., Reading.

[INMOS 84] Occam Programming Manual, Prentice-Hall International, pp. 100,

[Kahn 77]

1984.

G. Kahn, D.B.MacQueen, "Coroutines and networks of parallel

processes”, Information Processing 77, North Holland, 1977.

[Kanellakis 85]P.C. Kanellakis, S.A. Smolka, "On the Analysis of Cooperation and

[Karp 68]

Antagonism in Networks of Communicating Processes”, Proc.
Fourth ACM Sympcsium on Principle of Distributed Computing,
Canada, 1985, pp 23 - 38.

R Karp, and R.Miller, "Parallel Program Schemata”, RC-2053, IBM
T.J. Watson Research Center, Yorktown Heights, New York (April

195

1968).

[Kurshan &) R.P.Kurshan. "Modeling Concurrent Processes”, Proc. of Symposia

in Applied Mathematics, 1985.

[Lamport 78] L.Lamport, "Time, Clocks and Ordering of Events in a Distributed

System™ Comm. ACM, 21(7), July 1978, pp 558-565.

[Lamport &4] L.Lamport, F.B. Schneider, "The 'Hoare Logic’ of CSP and All

That™, ACM TOPLAS 6,2(April 1984).

[Lampson &1] Lampson et. al., "Distributed Systems - Architecture and Implemen-

[Lauer 75]

[Lauer 79|

[Lawler 76]

[Lipton 76]

[Lee 87)

[Levin 81]

Li 85]

tation™, Springer Verlag, LNCS Vol 105, 1981.

P Lauer, R. Campbell, "Formal Semantics of a Class of High-Level
Primitives for Coordinating Concurrent Processes” Acta Informa-

tica, Vol 5, Number 4 1975, pp 297-332. pp 441-460, August 1984.

P.E. Lauer, P.R. Torrigiani, M.W.Shields, "COSY: A System
Specification Language Based on Paths and Processes”, Acta Infor-

matica 12, pp 109-158, 1979.

E. Lawler, "Combinatorial Optimization - Networks and Matroids”,

Holt, Rinehart and Winston, 1976.

R. Lipton, "The Reachability Problen Requires Exponential Space”,
Research Report 62, Department of Computer Science, Yale Univer-
sity, Connecticut, 1976.

1. Lee, S.B. Davidson, "Generalized I/O with Timing Constraints”,
Proc. of International Conference on Distributed Computing Sys-

tems (ICDCS), pp 316-323, 1987.

G.Levin, D.Gries, "Proof Techniques for Communicating Sequential

Processes”, Acta Informatica 15, 1981, pp281-302.

W Li, P.E.Laver, "Using the Structural Operational Approach to
Express True Concurrency”, Formal Models in Programming,

Elsevier Science Publishers, (North-Holland), pp 373-397, 1985.

g

196

[Liskov &1]

(Mayr &4]

[Milner 0]

[Milne 853]

(Misra &1]

[Misra 82]

B. Liskov,"The Argus Language and System”, Proc. Advanced
Course on Distributed Systems - Methods and Tools for
Specification. TU Munchen, Apr. 1984.

E.W Mayvr, "An Algorithm for the General Petri Net Reachability
Problem™, SIAM Journal of Comput., Vol. 13, No.3 pp 441-460,
August 1924,

A Calculus of Communicating Systems, Lecture Notes in Computer
Science, Vol 92, Springer-Verlag 1980.

G.J Milne,"CIRCAL and the Representation of Communication,
Concurrency and Time,” ACM TOPLAS, 7(2), pp 270-298, April
1985.

J Misra, K.M.Chandy, "Proofs of Networks of Processes”, IEEL
Trans. on Softw. Engg. SE-7 4(July 1981) pp 417-426.

J Misra, K.M.Chandy, "Proving Safety and Liveness of Communi-
cating Processc with Examples”, Proc. ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, Aug 1982, pp
201-208.

[Mitchell 79] J.G.Mitchell, W.Maybury, R.Sweet, "Mesa Language Manual, ver-

sion 5.0" Rep. CSL-79-3, Xerox Palo Alto Research Center, April
1979.

[Murata 84] T. Murata, "Modeling and Analysis of Concurrent Systems”, in

book Handbook of Software Engineering, ed. C.R.Vick and
C.V.Ramamoorthy, Publ.Van Nostrand Reinhold, pp 39-63, 1984.

[Needham 82]R.M. Needham,A.J . Herbert, ”The Cambridge Distributed Comput-

[Nivat 82]

ing System”, Publ. Addison-Wesley Publishing Company, 1984.

M. Nivat, "Behaviors of Processes and Synchronized Systems of
Processes™, Theoretical Foundations of Programming Methodology,

Reidel Dodrecht, pp 473-550, 1982.

197

[Owickr 8] S.Owicki, L.Lamport,”Proving Liveness Properties of Concurrent
Programs™, ACM TOPLAS 4,3 (July 1982).

[Peterson &1] J. Peterson, Petri-Net Theory and Modeling of Systems, Prentice
Hall, Inc., Englewood Cliffs, New Jersey 1981.

[Petri 62] C.Petri,”"Kommunkation mit Automaten,”Ph.D. dissertation,
University of Bonn, Bonn, West Germany, 1962.

[Pratt 82] V.R. Pratt, "On the Composition of Processes”, Proc. 9th POPL,
Albuquerque, New Mexico 1982.

[Queille 82] J.P. Queille, J.Sifakis, "Specification and verification of concurrent
svstems in CESAR™ Inter. Symp. on Programming LNCS 137
pp337-350, 1982.

[Ramesh &6] S.Ramesh, "Programming with Shared Actions: A methodology for
developing Distributed Programs”, Ph.D. Dissertation, IIT Bombay,
India, June, 1986.

{(Ramesh 87] S.Ramesh, "An Efficient Implementation of CSP with Output

Guards™, Proc. of International Conference on Distributed Comput-
ing. 1987.

[Raynal 8] M. Raynal, "Distributed Algorithms and Protocols”, John Wiley and
Sons, 1988.

[Reif 84] J. H. Reif, P.G. Spirakis, "Real-Time Synchronization of Interpro-
cess Communications”, ACM transactions on programming
languages and systems (TOPLAS), pp 215-238, April 1984.

[Reisig 85] W. Reisig, Petri Nets, An Introduction, lecture notes in Computer
Science, Springer-Verlag, 1985.

[Silberschatz 79)
A. Silberschatz, "Communication and Synchronization in Distri-
buted Systems”, IEEE Transactions Software Eng.-5,6 Nov. 1979,
pp 542-546.

198

[Snepscheut 81]
J.L.A. Van de Snepscheut, "Synchronous Communication between
asynchronous components”, Information Processing Letters, 13, 3

Dec. 1981, pp 127-130.

[Stark 87] E. Stark, "Concurrent Transition System Semantics of Process Net-

works”, Proc. POPL, pp 199-210, 1987.

[Steenstrup 83]Port Automata and the algebra of concurrent processes, JCSS,
27(1), pp 29-50, 1983.

[Soundarajan 81]
N. Soundarajan, "Axiomatic Semantics of Communicating Sequen-
tial Processes™, Tech. Report, Department of Computer and Infor-
mation Sciences, Ohio State University, 1981.

[Sunshine 78] C.A.Sunshine,”Survey of Protocol Definition and Verification Tech-
niques”, Proc. of the Computer Network Protocols Symposium,
Liege, Belgium, 1978.

[Suzuki &3] I1.Suzuki and T.Murata, "A Method for Stepwise Refinement and
Abstraction of Petri-nets”, J. of Comp. and Syst. Sci., Vol 27, 7 pp
51-76, August 1983.

[Winskel 82] G. Winskel, "Event Structure Semantics for CCS and Related
Languages” Proc. 9th ICALP, LNCS 140, Springer Verlag, pp 561-
576, 1982.

[Zave 85] P.Zave, "A Distributed Alternative to Finite-State-Machine
Specifications”, ACM Transactions on Programming Languages and

Systems Vol 7, No 1, January 1985, pp 10-36.

199

appendix appendix

/e Appendiz A s/
/* a program here refers to communication component of @

single procesr. Each procese is suppoeed to have a computational
component written in C and & communicalion component written in
handehake end unite. Handshakes which are common to multiple
procerees are rveplicated. It 18 araumed that the firet process
mentioned in the handehake sa reeponeible for executing the

body. ¢/
program : :
YPROCESS YID 77
configinfo
unit

handshake_list

[

0080808000008 0008000008000038280008088088088083880880088088828082880838s

Definition of configuration

00082004080 0038080838088008800808080080800880088080000800888848088888080048

¢/

configinfo:
YCONFIGURATION hostlist YEND YCONFIGURATION 4°
I

hostlist: hosthist YID " YID %’
!
YID " YID

.
/0
880000000088 80080040088048800880808808808800008008000800884088080808808088080
Definition of a unit
8888002008080 80880880080000808888880800830280080883808080808800008
¢/
unit :
o~

tUNIT

communithame

unitinfo
sta!e_list
YEND YUNIT *°

.

unitinfo:
YSTATE YNUMBER ;°
stateval
marking

stateval:
YCONST 1" vallist 1" %°
vallist:

.o

vallist ,° valitem

valitem

‘ 200

appendix

valitem: YID :° YNUMBER

YMARKING 1" mlist 17 %7

.

marking:

mlist:
mlist °,” mitem
mitermn

mitem: YID % YNUMBER

|
YID o

/e

8880080000000 00220828800803008880083838808248008080800808808082808080880s2

Definition of etate traneitione
SORPINSEISSD20480 005008000882 0084838080025080880880088000808088808008

*/

state_list:
statedes
state_list statedes
‘
statedes:
stateinfo trans_list
'
stateinfo:
statename
action ;°
trans_list:
transdes
trans_list transdes
'
transdes:

‘>’ transname
statename action

K

'

action: YACTION
|

.

1]
communitname: YID

statename: YID
'

transname: YID

201

appendix

appendix

/c

G000 0PV008SV SV IRNRNSE0000880000080800088008280808008080

Definition of handshakes

S8020000000800080888880080400888000002080088080880888208008082088808000800

L]

handshake_list: handshake

|
handshake list handshake

’

handshake: handshakeheader

hbody

handshakeheader: enablcinfo YHANDSHAKE transname %°

proc_decl

enableinfo:

I
YENABLED

'

proc_decl:procedure

proc_decl procedure

procedure: YID . YID
1° arglist)”

arglist:arg arglist

arg: qual YID =~

qual: YVAR

I
hbody: YACTION
%% '
#include "lex.yy.c”

.
1

\ID . s

1

202

appendix

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C®l) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C®I systems. The areas of
technical competence include communications, command and
control, battle management information processing, survetllance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

